Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Toxicol Pharmacol ; 101: 104201, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37391053

RESUMO

This study investigated the deltamethrin (DMN) induced harmful effects on Pangasius hypophthalmus using enzymatic activity, haematological, and histopathological changes. LC50 value was 0.021 mg/L at 96 h, and sublethal toxicity was tested for 45 days at two `concentrations (i.e., 1/5th and 1/10th of LC50). Haematological parameters and enzymatic activities significantly changed between DMN-exposed and control groups (p < 0.05). Histopathologically, both DMN doses induced liver hyperemia, hepatic cell rupture, necrosis, hypertrepheoid bile duct, shifting nuclei, vascular haemorrhage, and hepatocyte degeneration, while in gill, secondary lamellae destruction, a fusion of adjacent gill lamellae, hypertrophy, hyperplasia, adhesion, and fusion were noticed. Kidney developed melanomacrophages, increased periglomerular and peritubular space, vacuolation, decreased glomerulus, hyaline droplets in tubular cells, loss of tubular epithelium, distal convoluted segment hypertrophy, and granular layer in brain pyramid and Purkinje cell nucleus. But, limiting pesticide impacts on freshwater fish and their habitat requires a holistic, cradle-to-grave approach and toxicological studies.


Assuntos
Peixes-Gato , Inseticidas , Tubarões , Poluentes Químicos da Água , Animais , Inseticidas/metabolismo , Fígado , Hipotálamo , Água Doce , Brânquias , Poluentes Químicos da Água/metabolismo
2.
Chemosphere ; 299: 134752, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35513083

RESUMO

The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, - Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications.


Assuntos
Durapatita , Poluentes Químicos da Água , Adsorção , Compostos Azo , Concentração de Íons de Hidrogênio , Cinética , Extratos Vegetais , Poluentes Químicos da Água/análise
3.
Environ Pollut ; 289: 117956, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426181

RESUMO

Hydrocarbons and their derivative compounds are recalcitrant in nature and causing adverse impacts to the environment and are classified as important pollutants. Removal of these pollutants from the atmosphere is a challenging process. Hydrophobic organic pollutants (HOPs) including crude oil, diesel, dotriacontane (C32), and tetracontane (C40) are subjected to the biodegradation study by using a bacterial consortium consist of Bacillus subtilis, Pseudomonas stutzeri, and Acinetobacter baumannii. The impact of pH and temperature on the biodegradation process was monitored. During the HOPs biodegradation, the impact of hydrocarbon-degrading extracellular enzymes such as alcohol dehydrogenase, alkane hydroxylase, and lipase was examined, and found average activity about 47.2, 44.3, and 51.8 µmol/mg-1, respectively. Additionally, other enzymes such as catechol 1,2 dioxygenase and catechol 2,3 dioxygenase were found as 118 and 112 µmol/mg-1 Enzyme as an average range in all the HOPs degradation, respectively. Also, the impact of the extracellular polymeric substance and proteins were elucidated during the biodegradation of HOPs with the average range of 116.90, 54.98 mg/L-1 respectively. The impact of biosurfactants on the degradation of different types of HOPs is elucidated. Very slight changes in the pH were also noticed during the biodegradation study. Biodegradation efficiency was calculated as 90, 84, 76, and 72% for crude oil, diesel, C32, and C40, respectively. Changes in the major functional groups (CH, C-O-C, CO, =CH2, CH2, CH3) were confirmed by FTIR analysis and intermediated metabolites were identified by GCMS analysis. The surface-active molecules along with the enzymes played a crucial role in the biodegradation process.


Assuntos
Poluentes Ambientais , Petróleo , Biodegradação Ambiental , Matriz Extracelular de Substâncias Poliméricas , Hidrocarbonetos
4.
J Hazard Mater ; 405: 124061, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33092887

RESUMO

The present study evaluating the coupling between bioremediation (BIO) and electrokinetic (EK) remediation of crude oil hydrocarbon by using bio-electrokinetic (BIO-EK) technique. The application of bacterial biosurfactant (BS) may increase the remediation efficiency by increasing the solubility of organic materials. In this work, the potential biosurfactant producing marine bacteria were isolated and identified by 16S rDNA analysis namely Bacillus subtilis AS2, Bacillus licheniformis AS3 and Bacillus velezensis AS4. Biodegradation efficiency of crude oil was found as 88%, 92% and 97% for strain AS2, AS3 and AS4 respectively, with the optimum temperature of 37 °C and pH 7. FTIR confirm the BS belongs to lipopeptide in nature. GCMS reveals that three isolates degraded the lower to higher molecular weight of the crude oil (C8 to C28) effectively. Results showed that use of BS in electokinetic remediation enhance the biodegradation rate of crude oil contaminated soil about 92% than EK (60%) in 2 days operation. BS enhances the solubilization of hydrocarbon and it leads to the faster electromigration of hydrocarbon to the anodic compartment, which was confirmed by the presence of higher total organic content than the EK. This study proven that the BIO-EK combined with BS can be used to enhance in situ bioremediation of petroleum contaminated soils.


Assuntos
Petróleo , Poluentes do Solo , Bacillus , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Tensoativos
5.
Arch Microbiol ; 202(8): 2311-2321, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32564100

RESUMO

Methanolic extract of Artemisia pallens (MEAP) (Asteraceae) was explored as greenbiocorrosion inhibitor for mild steel 1010 in 1.5% sodium chloride environment. Bacillus megaterium SKR7 induces the development of biofilm on the metal surface and forms the pitting corrosion. MEAP was showed (25 ppm) optimum inhibition effect of biocorrosion and further corrosion rate was highly reduced (0.3335 mm/year) than the control system (0.009 mm/year). The electrochemical study has supported the results with a higher value of total resistance (34 Ω cm2) when compared to control systems. It reveals the formation of a protective layer on the metal surface and reduces the adsorption of biofilm. This was due to the antimicrobial effect of MEAP. Overall, the results recognized that MEAP used as a green corrosion inhibitor for MS 1010 with 83% inhibition efficiency.


Assuntos
Artemisia/química , Bacillus megaterium/efeitos dos fármacos , Bacillus megaterium/metabolismo , Biofilmes/efeitos dos fármacos , Corrosão , Extratos Vegetais/farmacologia , Aço , Metanol/química
6.
Artif Cells Nanomed Biotechnol ; 44(8): 1878-1882, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26855063

RESUMO

The present study reports the simple, inexpensive, eco-friendly synthesis of silver nanoparticles (AgNPs) using coconut oil cake extract. Scanning electron microscopy-energy dispersive spectroscopy peak at 3 keV confirmed the presence of silver. Transmission electron micrograph showed that nanoparticles are mostly circular with an average size of 10-70 nm. The results of the X-ray powder diffraction analysis (2θ = 46.2, 67.4 and 76.8) indicated the crystal nature of the AgNPs. Fourier transform infrared spectroscopy analysis indicates that proteins present in the oilcake extract could be responsible for the reduction of silver ions. The synthesized AgNPs (1-4 mm) reduced the growth rate of multi-antibiotic-resistant bacteria such as Aeromonas sp., Acinetobacter sp. and Citrobacter sp. isolated from livestock wastewater.


Assuntos
Antibacterianos , Cocos/química , Bactérias Gram-Negativas/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Prata/química , Prata/farmacologia
7.
Int J Nanomedicine ; 10: 1977-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25792831

RESUMO

A rapid, green phytosynthesis of silver nanoparticles (AgNPs) using the aqueous extract of Helianthus tuberosus (sunroot tuber) was reported in this study. The morphology of the AgNPs was determined by transmission electron microscopy (TEM). Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) analysis confirmed the presence of AgNPs. Fourier transform infrared spectroscopy (FTIR) analysis revealed that biomolecules in the tuber extract were involved in the reduction and capping of AgNPs. The energy-dispersive spectroscopy (EDS) analysis of the AgNPs, using an energy range of 2-4 keV, confirmed the presence of elemental silver without any contamination. Further, the synthesized AgNPs were evaluated against phytopathogens such as Ralstonia solanacearum and Xanthomonas axonopodis. The AgNPs (1-4 mM) extensively reduced the growth rate of the phytopathogens. In addition, the cytotoxic effect of the synthesized AgNPs was analyzed using rat splenocytes. The cell viability was decreased according to the increasing concentration of AgNPs and 67% of cell death was observed at 100 µg/mL.


Assuntos
Antibacterianos , Helianthus/química , Nanopartículas Metálicas , Extratos Vegetais , Prata , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Ralstonia solanacearum/efeitos dos fármacos , Ratos , Prata/química , Prata/farmacologia , Prata/toxicidade , Baço/citologia , Xanthomonas axonopodis/efeitos dos fármacos
8.
J Genet Eng Biotechnol ; 13(1): 25-29, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30647563

RESUMO

Centella asiatica (Umbelliferae) has been used for centuries in Indian ayurvedic medicine for the treatment of a wide number of health disorders. The aim of this study was to estimate and compare the concentration of bioactive compounds between wild and in vitro propagated C. asiatica plants. A marked decrease in the total phenolic compounds, flavonoids, and ascorbic acid was observed between in vitro propagated and wild type plants collected from wet land habitat. The radical scavenging activity of the wild type plant extracts also varied with the habitats. This study clearly indicates that environmental factors play a crucial role in the plant metabolic activity and medicinal activity.

9.
Chemosphere ; 109: 42-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24873705

RESUMO

This study was aimed at assess the potential of diazotrophic bacteria, Herbaspirillum sp. GW103, for bioleaching of Cu in mine soil. The strain exhibited resistance to As (550mgL(-1)), Cu (350mgL(-1)), Zn (300mgL(-1)) and Pb (200mgL(-1)). The copper resistance was further confirmed by locating copA and copB genes. The survival of the isolate GW103 during bioleaching was analyzed using green fluorescent protein tagged GW103. Response surface methodology based Box-Behnken design was used to optimize the physical and chemical conditions for Cu bioleaching. Five significant variables (temperature, incubation time, CaCO3, coconut oil cake (COC), agitation rate) were selected for the optimization. Second-order polynomials were established to identify the relationship between Cu bioleaching and variables. The optimal conditions for maximum Cu bioleaching (66%) were 30°C, 60h of incubation with 1.75% of CaCO3 and 3% COC at 140rpm. The results of Cu sequential extraction studies indicated that the isolate GW103 leached Cu from ion-exchangeable, reducible, strong organic and residual fractions. Obtained results point out that the isolate GW103 could be used for bioleaching of Cu from mine soils.


Assuntos
Cobre/química , Herbaspirillum/metabolismo , Poluentes do Solo/química , Solo/química , Carbonato de Cálcio/química , Óleo de Coco , Cobre/metabolismo , Cobre/toxicidade , Herbaspirillum/efeitos dos fármacos , Óleos de Plantas/química , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Solubilidade , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA