Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 23(4): 330, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37935874

RESUMO

Indian natural climbing shrub Tinospora cordifolia, often known as "Guduchi" and "Amrita," is a highly esteemed medicinal plant in the Indian system of medicine (ISM). It is a member of the Menispermaceae family which consists of a rich source of protein, micronutrients, and rich source of bioactive components which are used in treating various systemic diseases. The current study was designed to know the biological characterization of the plant genome and biosynthesis of plant metabolites essential for its medicinal applications. Tinospora cordifolia's complete genome was sequenced using Illumina HiSeq2500 sequencing technology. The draft genome was assembled through a de novo method. An integrative genome annotation approach was used to perform functional gene prediction. The pathway analysis was carried out using the KEGG database. The total genome size obtained after genome assembly was 894 Mb with an N50 of 9148 bp. The integrative annotation approach resulted in 35,111 protein-coding genes. In addition, genes responsible for the synthesis of syringin, a secondary metabolite found in plants, were identified. In comparison to the standard drug (dopamine, rasagiline, and selegiline), syringin's molecular docking exhibited a greater binding affinity from the range of - 4.3 to - 6.6 kcal/mol for all the targets of Parkinson's disease and for Alzheimer's targets; it has shown the maximum potency from the range of - 6.5 to - 7.4 kcal/mol with respect to the standard drug (donepezil, galantamine, and rivastigmine). This study provides the genomic information of Tinospora cordifolia which is helpful in understanding genomic insights and metabolic pathways connected to the corresponding plant genome and predicts the possible useful effect for the molecular characterization of therapeutic drugs.


Assuntos
Plantas Medicinais , Tinospora , Plantas Medicinais/genética , Tinospora/genética , Simulação de Acoplamento Molecular , Glucosídeos
2.
BMC Genomics ; 24(1): 197, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046210

RESUMO

BACKGROUND: Peepal/Bodhi tree (Ficus religiosa L.) is an important, long-lived keystone ecological species. Communities on the Indian subcontinent have extensively employed the plant in Ayurveda, traditional medicine, and spiritual practices. The Peepal tree is often thought to produce oxygen both during the day and at night by Indian folks. The goal of our research was to produce molecular resources using whole-genome and transcriptome sequencing techniques. RESULTS: The complete genome of the Peepal tree was sequenced using two next-generation sequencers Illumina HiSeq1000 and MGISEQ-2000. We assembled the draft genome of 406 Mb, using a hybrid assembly workflow. The genome annotation resulted in 35,093 protein-coding genes; 53% of its genome consists of repetitive sequences. To understand the physiological pathways in leaf tissues, we analyzed photosynthetically distinct conditions: bright sunny days and nights. The RNA-seq analysis supported the expression of 26,479 unigenes. The leaf transcriptomic analysis of the diurnal and nocturnal periods revealed the expression of the significant number of genes involved in the carbon-fixation pathway. CONCLUSIONS: This study presents a draft hybrid genome assembly for F. religiosa and its functional annotated genes. The genomic and transcriptomic data-derived pathways have been analyzed for future studies on the Peepal tree.


Assuntos
Ficus , Transcriptoma , Perfilação da Expressão Gênica , Genômica , Sequência de Bases , Anotação de Sequência Molecular
3.
J Genet ; 1012022.
Artigo em Inglês | MEDLINE | ID: mdl-36420626

RESUMO

Pistacia chinensis subsp. integerrima is one of the medicinal plants, well known for gall formation and popularly used in Ayurveda to treat various systemic diseases such as chronic disorders, respiratory problems, etc. P. integerrima genome characterization will aid in the study of Pistacia genes and pathways involved in therapeutic application. To understand the biological characteristics of this plant and to gain the genetic insight into the biosynthesis of its natural compounds, the whole genome of P. integerrima and its leaf transcriptome was sequenced using Illumina sequencing technology. The sequenced genome was functionally annotated, and gene prediction was performed with integrated genome annotation workflow. The pathway analysis was carried out using KEGG database. We obtained a draft genome assembly of 462 Mb with N50 16,145 bp. A total of 39,452 genes were found, and 18,492 of these contained RNA or protein evidence. We characterized the genes involved in biosynthetic pathways of different plant secondary metabolites such as flavonoids and terpenoids. Also, we identified miR397 and miR828 family noncoding RNA; which mainly targets the laccase (LCA) and MYB protein functioning respectively. Phylogeneic analysis showed that P. integerrima is genetically more closer to P. vera. In this study, we attempt to explore the whole genome information of P. integerrima which will provide a genomic insight in the future for omics studies as well as serves as valuable resource for the molecular characterization of medicinal compounds.


Assuntos
Pistacia , Plantas Medicinais , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Pistacia/genética , Genômica , Folhas de Planta/genética , Transcriptoma
4.
BMC Plant Biol ; 15: 212, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26315624

RESUMO

BACKGROUND: Krishna Tulsi, a member of Lamiaceae family, is a herb well known for its spiritual, religious and medicinal importance in India. The common name of this plant is 'Tulsi' (or 'Tulasi' or 'Thulasi') and is considered sacred by Hindus. We present the draft genome of Ocimum tenuiflurum L (subtype Krishna Tulsi) in this report. The paired-end and mate-pair sequence libraries were generated for the whole genome sequenced with the Illumina Hiseq 1000, resulting in an assembled genome of 374 Mb, with a genome coverage of 61 % (612 Mb estimated genome size). We have also studied transcriptomes (RNA-Seq) of two subtypes of O. tenuiflorum, Krishna and Rama Tulsi and report the relative expression of genes in both the varieties. RESULTS: The pathways leading to the production of medicinally-important specialized metabolites have been studied in detail, in relation to similar pathways in Arabidopsis thaliana and other plants. Expression levels of anthocyanin biosynthesis-related genes in leaf samples of Krishna Tulsi were observed to be relatively high, explaining the purple colouration of Krishna Tulsi leaves. The expression of six important genes identified from genome data were validated by performing q-RT-PCR in different tissues of five different species, which shows the high extent of urosolic acid-producing genes in young leaves of the Rama subtype. In addition, the presence of eugenol and ursolic acid, implied as potential drugs in the cure of many diseases including cancer was confirmed using mass spectrometry. CONCLUSIONS: The availability of the whole genome of O.tenuiflorum and our sequence analysis suggests that small amino acid changes at the functional sites of genes involved in metabolite synthesis pathways confer special medicinal properties to this herb.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Ocimum/genética , Índia , Ocimum/metabolismo , Folhas de Planta/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA