Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 76: 153-163, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28622962

RESUMO

Magnetic freeze casting utilizes the freezing of water, a low magnetic field and surface magnetized materials to make multi-axis strengthened porous scaffolds. A much greater magnetic moment was measured for larger magnetized alumina platelets compared with smaller particles, which indicated that more platelet aggregation occurred within slurries. This led to more lamellar wall alignment along the magnetic field direction during magnetic freeze casting at 75 mT. Slurries with varying ratios of magnetized particles to platelets (0:1, 1:3, 1:1, 3:1, 7:1, 1:0) produced porous scaffolds with different structural features and degrees of lamellar wall alignment. The greatest mechanical enhancement in the magnetic field direction was identified in the synergistic condition with the highest particle to platelet ratio (7:1). Magnetic freeze casting with varying ratios of magnetized anisotropic and isotropic alumina provided insights about how heterogeneous morphologies aggregate within lamellar walls that impact mechanical properties. Fabrication of strengthened scaffolds with multi-axis aligned porosity was achieved without introducing different solid materials, freezing agents or additives. Resemblance of 7:1 particle to platelet scaffold microstructure to wood light-frame house construction is framed in the context of assembly inspiration being derived from both natural and synthetic sources.


Assuntos
Óxido de Alumínio/química , Congelamento , Campos Magnéticos , Fenômenos Mecânicos , Propriedades de Superfície
2.
Mater Sci Eng C Mater Biol Appl ; 77: 484-492, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532056

RESUMO

Bone consists of a hard mineral phase and a compliant biopolymer phase resulting in a composite material that is both lightweight and strong. Osteoporosis that degrades spongy bone preferentially over time leads to bone brittleness in the elderly. A porous ceramic material that can mimic spongy bone for a one-time implant provides a potential solution for the future needs of an aging population. Scaffolds made by magnetic freeze casting resemble the aligned porosity of spongy bone. A magnetic field applied throughout freezing induces particle chaining and alignment of lamellae structures between growing ice crystals. After freeze drying to extract the ice and sintering to strengthen the scaffold, cubes from the scaffold center are mechanically compressed along longitudinal (z-axis, ice growth direction) and transverse (y-axis, magnetic field direction) axes. The best alignment of lamellar walls in the scaffold center occurs when applying magnetic freeze casting with the largest particles (350nm) at an intermediate magnetic field strength (75mT), which also agrees with stiffness enhancement results in both z and y-axes. Magnetic moments of different sized magnetized alumina particles help determine the ideal magnetic field strength needed to induce alignment in the scaffold center rather than just at the poles.


Assuntos
Magnetismo , Óxido de Alumínio , Cerâmica , Liofilização , Congelamento , Porosidade , Engenharia Tecidual , Alicerces Teciduais
3.
Biomaterials ; 35(13): 4026-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24529628

RESUMO

Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1-2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing.


Assuntos
Fosfatos de Cálcio/química , Colágeno/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Regeneração Óssea , Sobrevivência Celular/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Alicerces Teciduais/efeitos adversos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA