RESUMO
BACKGROUND: Hyperthermia is a well-accepted cancer therapy. Microwaves provide a very precise, targeted means of hyperthermia and are currently used to treat plantar warts caused by cutaneous-infective human papillomaviruses (HPVs). Other HPV genotypes infecting the anogenital mucosa cause genital warts or preneoplastic lesions or cervical cancer. Effective, non-ablative therapies for these morbid HPV-associated lesions are lacking. METHODS: The molecular consequences of microwave treatment were investigated in in vitro cultured three-dimensional HPV-positive cervical tumour tissues, and tissues formed from HPV-infected normal immortalised keratinocytes. Microwave energy delivery to tissues was quantified. Quantitative reverse transcriptase PCR was used to quantify mRNA expression. Immunohistochemistry and fluorescence immunostaining was used to assess protein expression. FINDINGS: Microwave energy deposition induced sustained, localised cell death at the treatment site. There was a downregulation in levels of HPV oncoproteins E6 and E7 alongside a reduction in cellular growth/proliferation and induction of apoptosis/autophagy. HSP70 expression confirmed hyperthermia, concomitant with induction of translational stress. INTERPRETATION: The data suggest that microwave treatment inhibits tumour cell proliferation and allows the natural apoptosis of HPV-infected cells to resume. Precision microwave delivery presents a potential new treatment for treating HPV-positive anogenital precancerous lesions and cancers. FUNDING: Funding was through an Innovate UK Biomedical Catalyst grant (ID# 92138-556187), a Chief Scientist Office grant (TCS/19/11) and core support from Medical Research Council (MC_ UU_12014) core funding for the MRC-University of Glasgow Centre for Virus Research.
Assuntos
Hipertermia Induzida , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Micro-Ondas , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/terapia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/genética , Morte Celular , Proteínas E7 de Papillomavirus/genéticaRESUMO
Persistent infection with cancer risk-related viruses leads to molecular, cellular and immune response changes in host organisms that in some cases direct cellular transformation. Alternative splicing is a conserved cellular process that increases the coding complexity of genomes at the pre-mRNA processing stage. Human and other animal tumour viruses use alternative splicing as a process to maximize their transcriptomes and proteomes. Medical therapeutics to clear persistent viral infections are still limited. However, specific lessons learned in some viruses [e.g. HIV and HCV (hepatitis C virus)] suggest that drug-directed inhibition of alternative splicing could be useful for this purpose. The present review describes the basic mechanisms of constitutive and alternative splicing in a cellular context and known splicing patterns and the mechanisms by which these might be achieved for the major human infective tumour viruses. The roles of splicing-related proteins expressed by these viruses in cellular and viral gene regulation are explored. Moreover, we discuss some currently available drugs targeting SR (serine/arginine-rich) proteins that are the main regulators of constitutive and alternative splicing, and their potential use in treatment for so-called persistent viral infections.