Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 193: 114762, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499871

RESUMO

The allosteric modulating free fatty acid receptor 2 ligands Cmp58 and AZ1729, increased the activity induced by orthosteric receptor agonists mediating a rise in intracellular calcium ions and activation of the neutrophil NADPH-oxidase. Together, the two modulators triggered an orthosteric-agonist-independent activation of the oxidase without any rise in the concentration of intracellular calcium ions. In this study, structurally diverse compounds presumed to be ligands for free fatty acid receptor 2 were used to gain additional insights into receptor-modulation/signaling. We identified two molecules that activate neutrophils on their own and we classified one as allosteric agonist and the other as orthosteric agonist. Ten compounds were classified as allosteric FFA2R modulators. Of these, one activated neutrophils when combined with AZ1729; the nine remaining compounds activated neutrophils solely when combined with Cmp58. The activation signals were primarily biased when stimulated by two allosteric modulators interacting with different binding sites, such that two complementary modulators together triggered an activation of the NADPH-oxidase but no increase in the intracellular concentration of calcium ions. No neutrophil activation was induced when allosteric receptor modulators suggested to be recognized by the same binding site were combined, results in agreement with our proposed model for activation, in which the receptor has two different sites that selectively bind allosteric modulators. The down-stream signaling mediated by cross-sensitizing allosteric receptor modulators, occurring independent of any orthosteric agonist, represent a new mechanism for activation of the neutrophil NADPH oxidase.


Assuntos
Guanidinas/farmacologia , Isoquinolinas/farmacologia , Neutrófilos/fisiologia , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/metabolismo , Cálcio/metabolismo , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/química , Humanos , Isoquinolinas/química , Ligantes , Estrutura Molecular , NADPH Oxidases , Relação Estrutura-Atividade
2.
PLoS One ; 13(2): e0193380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474466

RESUMO

Excess mineralocorticoid receptor (MR) activation promotes target organ dysfunction, vascular injury and fibrosis. MR antagonists like eplerenone are used for treating heart failure, but their use is limited due to the compound class-inherent hyperkalemia risk. Here we present evidence that AZD9977, a first-in-class MR modulator shows cardio-renal protection despite a mechanism-based reduced liability to cause hyperkalemia. AZD9977 in vitro potency and binding mode to MR were characterized using reporter gene, binding, cofactor recruitment assays and X-ray crystallopgraphy. Organ protection was studied in uni-nephrectomised db/db mice and uni-nephrectomised rats administered aldosterone and high salt. Acute effects of single compound doses on urinary electrolyte excretion were tested in rats on a low salt diet. AZD9977 and eplerenone showed similar human MR in vitro potencies. Unlike eplerenone, AZD9977 is a partial MR antagonist due to its unique interaction pattern with MR, which results in a distinct recruitment of co-factor peptides when compared to eplerenone. AZD9977 dose dependently reduced albuminuria and improved kidney histopathology similar to eplerenone in db/db uni-nephrectomised mice and uni-nephrectomised rats. In acute testing, AZD9977 did not affect urinary Na+/K+ ratio, while eplerenone increased the Na+/K+ ratio dose dependently. AZD9977 is a selective MR modulator, retaining organ protection without acute effect on urinary electrolyte excretion. This predicts a reduced hyperkalemia risk and AZD9977 therefore has the potential to deliver a safe, efficacious treatment to patients prone to hyperkalemia.


Assuntos
Benzoatos/farmacologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Oxazinas/farmacologia , Administração Oral , Aldosterona , Animais , Benzoatos/química , Benzoatos/farmacocinética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Eplerenona , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Mutantes , Antagonistas de Receptores de Mineralocorticoides/química , Antagonistas de Receptores de Mineralocorticoides/farmacocinética , Estrutura Molecular , Oxazinas/química , Oxazinas/farmacocinética , Potássio/urina , Ratos Sprague-Dawley , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Sódio/urina , Sódio na Dieta , Espironolactona/análogos & derivados , Espironolactona/química , Espironolactona/farmacocinética , Espironolactona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA