Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Molecules ; 29(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398590

RESUMO

Rapid screening of botanical extracts for the discovery of bioactive natural products was performed using a fractionation approach in conjunction with flow-injection high-resolution mass spectrometry for obtaining chemical fingerprints of each fraction, enabling the correlation of the relative abundance of molecular features (representing individual phytochemicals) with the read-outs of bioassays. We applied this strategy for discovering and identifying constituents of Centella asiatica (C. asiatica) that protect against Aß cytotoxicity in vitro. C. asiatica has been associated with improving mental health and cognitive function, with potential use in Alzheimer's disease. Human neuroblastoma MC65 cells were exposed to subfractions of an aqueous extract of C. asiatica to evaluate the protective benefit derived from these subfractions against amyloid ß-cytotoxicity. The % viability score of the cells exposed to each subfraction was used in conjunction with the intensity of the molecular features in two computational models, namely Elastic Net and selectivity ratio, to determine the relationship of the peak intensity of molecular features with % viability. Finally, the correlation of mass spectral features with MC65 protection and their abundance in different sub-fractions were visualized using GNPS molecular networking. Both computational methods unequivocally identified dicaffeoylquinic acids as providing strong protection against Aß-toxicity in MC65 cells, in agreement with the protective effects observed for these compounds in previous preclinical model studies.


Assuntos
Doença de Alzheimer , Centella , Ácido Quínico/análogos & derivados , Triterpenos , Humanos , Peptídeos beta-Amiloides/toxicidade , Doença de Alzheimer/tratamento farmacológico , Extratos Vegetais/farmacologia , Cognição , Centella/química , Triterpenos/análise , Bioensaio , Simulação por Computador
2.
J Chromatogr Open ; 42023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37789901

RESUMO

Centella asiatica (CA) is a culinary vegetable and well-known functional food that is widely used as a medicinal herb and dietary supplement. CA is rich in pentacyclic triterpenes (TTs), including asiaticoside (AS), madecassoside (MS) and the related aglycones asiatic acid (AA), madecassic acid (MA). Traditionally, TTs have been associated with the bioactivity and health promoting effect of CA. Recently, mono-caffeoylquinic acids (MonoCQAs) and di-caffeoylquinic acids (DiCQAs) have been found to contribute to the bioactivity of CA as well. This work reports an analytical strategy based on liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM-MS) for the simultaneous rapid and accurate quantification of 12 bioactive compounds in CA, namely AS, MS, AA, MA, 5-CQA, 4-CQA, 3-CQA, 1,3-DiCQA, 3,4-DiCQA, 1,5-DiCQA, 3,5-DiCQA, 4,5-DiCQA. Method selectivity, accuracy, precision, repeatability, robustness, linearity range, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The validated LC-MRM-MS method has been successfully applied to quantify the 12 bioactive compounds in CA aqueous extracts and two related formulations: a standardized CA product (CAP) used in a phase I clinical trial and formulated CA rodent diets used in preclinical studies. The validated method allows us to support the standardization of CA products used for clinical trials and conduct routine LC-MRM-MS analyses of formulated preclinical diets to confirm correct levels of CA phytochemical markers.

3.
J Alzheimers Dis ; 81(4): 1453-1468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935097

RESUMO

BACKGROUND: The medicinal herb Centella asiatica has been long been used for its neuroprotective and cognitive enhancing effects. We have previously shown that two weeks of treatment with a water extract of Centella asiatica (CAW) improves cognition and activates the endogenous antioxidant response pathway without altering amyloid-ß (Aß) plaque burden. OBJECTIVE: Here, we assess the effect of long-term treatment of CAW in the 5xFAD mouse model of Aß accumulation. METHODS: Four-month-old 5xFAD mice were treated with CAW in their drinking water (2 g/L) for three months at which point they underwent cognitive testing as well as analysis of Aß plaque levels and antioxidant and synaptic gene expression. In order to confirm the involvement of the antioxidant regulatory transcription factor NRF2 on the effects of CAW on synaptic plasticity, neurons isolated from 5xFAD mice were also treated with CAW and the targeted inhibitor ML385. RESULTS: Three months of treatment with CAW improved spatial and contextual memory as well as executive function in 5xFAD mice. This improvement was accompanied by increased antioxidant gene expression and a decrease in Aß plaque burden relative to untreated 5xFAD animals. In isolated neurons, treatment with ML385 blocked the effects of CAW on dendritic arborization and synaptic gene expression. CONCLUSION: These results suggest that prolonged CAW exposure could be beneficial in Alzheimer's disease and that these effects likely involve NRF2 activation. Moreover, these findings suggest that targeting NRF2 itself may be a relevant therapeutic strategy for improving synaptic plasticity and cognitive function in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Centella , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Imidazolidinas/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Triterpenos/farmacologia
4.
Neurobiol Aging ; 100: 48-58, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33486357

RESUMO

The water extract of Centella asiatica (CAW) improves cognitive and mitochondrial function and activates the nuclear factor erythroid 2-related factor 2 (NRF2) regulated antioxidant response pathway in aged mice. Here we investigate whether NRF2 activation is required for the cognitive and mitochondrial effects of prolonged CAW exposure during aging. Five-month-old NRF2 knockout (NRF2KO) and wild-type mice were treated with CAW for 1, 7, or 13 months. Each cohort underwent cognitive testing and hippocampal mitochondrial analyses. Age-related cognitive decline was accelerated in NRF2KO mice and while CAW treatment improved cognitive performance in wild-type mice, it had no effect on NRF2KO animals. Hippocampal mitochondrial function also declined further with age in NRF2KO mice and greater hippocampal mitochondrial dysfunction was associated with poorer cognitive performance in both genotypes. Long-term CAW treatment did not affect mitochondrial endpoints in animals of either genotype. These data indicate that loss of NRF2 results in accelerated age-related cognitive decline and worsened mitochondrial deficits. NRF2 also appears to be required for the cognitive enhancing effects of CAW during aging.


Assuntos
Envelhecimento/genética , Envelhecimento/psicologia , Antioxidantes , Cognição/efeitos dos fármacos , Disfunção Cognitiva/genética , Doenças Mitocondriais/genética , Fator 2 Relacionado a NF-E2/fisiologia , Fitoterapia , Triterpenos/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Centella , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/psicologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/psicologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais , Triterpenos/uso terapêutico
5.
Front Pharmacol ; 12: 788312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975484

RESUMO

Centella asiatica is an herb used in Ayurvedic and traditional Chinese medicine for its beneficial effects on brain health and cognition. Our group has previously shown that a water extract of Centella asiatica (CAW) elicits cognitive-enhancing effects in animal models of aging and Alzheimer's disease, including a dose-related effect of CAW on memory in the 5xFAD mouse model of ß-amyloid accumulation. Here, we endeavor to elucidate the mechanisms underlying the effects of CAW in the brain by conducting a metabolomic analysis of cortical tissue from 5xFAD mice treated with increasing concentrations of CAW. Tissue was collected from 8-month-old male and female 5xFAD mice and their wild-type littermates treated with CAW (0, 200, 500, or 1,000 mg/kg/d) dissolved in their drinking water for 5 weeks. High-performance liquid chromatography coupled to high-resolution mass spectrometry analysis was performed and relative levels of 120 annotated metabolites were assessed in the treatment groups. Metabolomic analysis revealed sex differences in the effect of the 5xFAD genotype on metabolite levels compared to wild-type mice, and variations in the metabolomic response to CAW depending on sex, genotype, and CAW dose. In at least three of the four treated groups (5xFAD or wild-type, male or female), CAW (500 mg/kg/d) significantly altered metabolic pathways related to purine metabolism, nicotinate and nicotinamide metabolism, and glycerophospholipid metabolism. The results are in line with some of our previous findings regarding specific mechanisms of action of CAW (e.g., improving mitochondrial function, reducing oxidative stress, and increasing synaptic density). Furthermore, these findings provide new information about additional, potential mechanisms for the cognitive-enhancing effect of CAW, including upregulation of nicotinamide adenine dinucleotide in the brain and modulation of brain-derived neurotrophic factor. These metabolic pathways have been implicated in the pathophysiology of Alzheimer's disease, highlighting the therapeutic potential of CAW in this neurodegenerative disease.

6.
ACS Appl Bio Mater ; 4(8): 6244-6255, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006910

RESUMO

Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) have been shown to play an important role in numerous neurological disorders, such as Alzheimer's disease. The identification of biologically active compounds interacting with TrkB serves as a drug discovery strategy to identify drug leads for neurological disorders. Here, we report effective immobilization of functional TrkB on magnetic iron oxide nanoclusters, where TrkB receptors behave as "smart baits" to bind compounds from mixtures and magnetic nanoclusters enable rapid isolation through magnetic separation. The presence of the immobilized TrkB was confirmed by specific antibody labeling. Subsequently, the activity of the TrkB on iron oxide nanoclusters was evaluated with ATP/ADP conversion experiments using a known TrkB agonist. The immobilized TrkB receptors can effectively identify binders from mixtures containing known binders, synthetic small molecule mixtures, and Gotu Kola (Centella asiatica) plant extracts. The identified compounds were analyzed by an ultrahigh-performance liquid chromatography system coupled with a quadrupole time-of-flight mass spectrometer. Importantly, some of the identified TrkB binders from Gotu Kola plant extracts matched with compounds previously linked to neuroprotective effects observed for a Gotu Kola extract approved for use in a clinical trial. Our studies suggest that the possible therapeutic effects of the Gotu Kola plant extract in dementia treatment, at least partially, might be associated with compounds interacting with TrkB. The unique feature of this approach is its ability to fast screen potential drug leads using less explored transmembrane targets. This platform works as a drug-screening funnel at early stages of the drug discovery pipeline. Therefore, our approach will not only greatly benefit drug discovery processes using transmembrane proteins as targets but also allow for evaluation and validation of cellular pathways targeted by drug leads.


Assuntos
Centella , Avaliação Pré-Clínica de Medicamentos , Fenômenos Magnéticos , Extratos Vegetais , Receptores Proteína Tirosina Quinases
7.
Nutrients ; 12(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202902

RESUMO

Centella asiatica (CA) is an edible plant and a popular botanical dietary supplement. It is reputed, in Ayurveda, to mitigate age-related cognitive decline. There is a considerable body of preclinical literature supporting CA's ability to improve learning and memory. This study evaluated the contribution of CA's triterpenes (TT), widely considered its active compounds, and caffeoylquinic acids (CQA) to the cognitive effects of CA water extract (CAW) in 5XFAD mice, a model of Alzheimer's disease. 5XFAD mice were fed a control diet alone, or one containing 1% CAW or compound groups (TT, CQA, or TT + CQA) equivalent to their content in 1% CAW. Wild-type (WT) littermates received the control diet. Conditioned fear response (CFR) was evaluated after 4.5 weeks. Female 5XFAD controls showed no deficit in CFR compared to WT females, nor any effects from treatment. In males, CFR of 5XFAD controls was attenuated compared to WT littermates (p = 0.005). 5XFAD males receiving CQA or TT + CQA had significantly improved CFR (p < 0.05) compared to 5XFAD male controls. CFR did not differ between 5XFAD males receiving treatment diets and WT males. These data confirm a role for CQA in CAW's cognitive effects.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Centella/química , Disfunção Cognitiva/tratamento farmacológico , Ácido Quínico/farmacologia , Triterpenos/farmacologia , Animais , Cognição/efeitos dos fármacos , Transtornos Cognitivos , Dieta , Modelos Animais de Doenças , Feminino , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Extratos Vegetais , Ácido Quínico/análogos & derivados , Ácido Quínico/uso terapêutico , Triterpenos/uso terapêutico
8.
Phytochem Anal ; 31(6): 722-738, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32281154

RESUMO

INTRODUCTION: The phytochemical composition of plant material governs the bioactivity and potential health benefits as well as the outcomes and reproducibility of laboratory studies and clinical trials. OBJECTIVE: The objective of this work was to develop an efficient method for the in-depth characterisation of plant extracts and quantification of marker compounds that can be potentially used for subsequent product integrity studies. Centella asiatica (L.) Urb., an Ayurvedic herb with potential applications in enhancing mental health and cognitive function, was used as a case study. METHODS: A quadrupole time-of-flight analyser in conjunction with an optimised high-performance liquid chromatography (HPLC) separation was used for in-depth untargeted fingerprinting and post-acquisition precursor ion quantification to determine levels of distinct phytochemicals in various C. asiatica extracts. RESULTS: We demonstrate the utility of this workflow for the characterisation of extracts of C. asiatica. This integrated workflow allowed the identification or tentative identification of 117 compounds, chemically interconnected based on Tanimoto chemical similarity, and the accurate quantification of 24 phytochemicals commonly found in C. asiatica extracts. CONCLUSION: We report a phytochemical analysis method combining liquid chromatography, high resolution mass spectral data acquisition, and post-acquisition interrogation that allows chemical fingerprints of botanicals to be obtained in conjunction with accurate quantification of distinct phytochemicals. The variability in the composition of specialised metabolites across different C. asiatica accessions was substantial, demonstrating that detailed characterisation of plant extracts is a prerequisite for reproducible use in laboratory studies, clinical trials and safe consumption. The methodological approach is generally applicable to other botanical products.


Assuntos
Centella , Triterpenos , Cromatografia Líquida de Alta Pressão , Compostos Fitoquímicos , Extratos Vegetais , Reprodutibilidade dos Testes , Triterpenos/análise
9.
Antioxidants (Basel) ; 8(12)2019 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-31817977

RESUMO

Centella asiatica (CA) herb is a traditional medicine, long reputed to provide cognitive benefits. We have reported that CA water extract (CAW) treatment improves cognitive function of aged Alzheimer's disease (AD) model Tg2576 and wild-type (WT) mice, and induces an NRF2-regulated antioxidant response in aged WT mice. Here, CAW was administered to AD model 5XFAD female and male mice and WT littermates (age: 7.6 +/ - 0.6 months), and object recall and contextual fear memory were tested after three weeks treatment. CAW's impact on amyloid-ß plaque burden, and markers of neuronal oxidative stress and synaptic density, was assessed after five weeks treatment. CAW antioxidant activity was evaluated via nuclear transcription factor (erythroid-derived 2)-like 2 (NRF2) and NRF2-regulated antioxidant response element gene expression. Memory improvement in both genders and genotypes was associated with dose-dependent CAW treatment without affecting plaque burden, and marginally increased synaptic density markers in the hippocampus and prefrontal cortex. CAW treatment increased Nrf2 in hippocampus and other NRF2 targets (heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit). Reduced plaque-associated SOD1, an indicator of oxidative stress, was observed in the hippocampi and cortices of CAW-treated 5XFAD mice. We postulate that CAW treatment leads to reduced oxidative stress, contributing to improved neuronal health and cognition.

10.
Mol Cell Neurosci ; 93: 1-9, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30253196

RESUMO

Centella asiatica is a medicinal plant used to enhance memory. We have previously shown that a water extract of Centella asiatica (CAW) attenuates ß-amyloid (Aß)-induced spatial memory deficits in mice and improves neuronal health. Yet the effect of CAW on other cognitive domains remains unexplored as does its in vivo mechanism of improving Aß-related cognitive impairment. This study investigates the effects of CAW on learning, memory and executive function as well as mitochondrial function and antioxidant response in the 5xFAD model of Aß accumulation. Seven month old 5xFAD female mice were treated with CAW (2 mg/mL) in their drinking water for two weeks prior to behavioral testing. Learning, memory and executive function were assessed using the object location memory task (OLM), conditioned fear response (CFR) and odor discrimination reversal learning (ODRL) test. Mitochondrial function was profiled using the Seahorse XF platform in hippocampal mitochondria isolated from these animals and tissue was harvested for assessment of mitochondrial, antioxidant and synaptic proteins. CAW improved performance in all behavioral tests in the 5xFAD but had no effect on WT animals. Hippocampal mitochondrial function was improved and hippocampal and cortical expression of mitochondrial genes was increased in CAW-treated 5xFAD mice. Gene expression of the transcription factor NRF2, as well as its antioxidant target enzymes, was also increased with CAW treatment in both WT and 5xFAD mice. CAW treatment also decreased Aß-plaque burden in the hippocampus of treated 5xFAD mice but had no effect on plaques in the cortex. These data show that CAW can improve many facets of Aß-related cognitive impairment in 5xFAD mice. Oral treatment with CAW also attenuates hippocampal mitochondrial dysfunction in these animals. Because mitochondrial dysfunction and oxidative stress accompany cognitive impairment in many pathological conditions beyond Alzheimer's disease, this suggests potentially broad therapeutic utility of CAW.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Centella/metabolismo , Função Executiva/fisiologia , Memória/fisiologia , Mitocôndrias/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Aprendizagem/fisiologia , Camundongos Transgênicos , Neurônios/metabolismo , Extratos Vegetais , Triterpenos/metabolismo
11.
Brain Behav ; 8(7): e01024, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29920983

RESUMO

INTRODUCTION: Centella asiatica is a plant used for centuries to enhance memory. We have previously shown that a water extract of Centella asiatica (CAW) attenuates age-related spatial memory deficits in mice and improves neuronal health. Yet the effect of CAW on other cognitive domains remains unexplored as does its mechanism of improving age-related cognitive impairment. This study investigates the effects of CAW on a variety of cognitive tasks as well as on synaptic density and mitochondrial and antioxidant pathways. METHODS: Twenty-month-old CB6F1 mice were treated with CAW (2 mg/ml) in their drinking water for 2 weeks prior to behavioral testing. Learning, memory, and executive function were assessed using the novel object recognition task (NORT), object location memory task (OLM), and odor discrimination reversal learning (ODRL) test. Tissue was collected for Golgi analysis of spine density as well as assessment of mitochondrial, antioxidant, and synaptic proteins. RESULTS: CAW improved performance in all behavioral tests suggesting effects on hippocampal and cortical dependent memory as well as on prefrontal cortex mediated executive function. There was also an increase in synaptic density in the treated animals, which was accompanied by increased expression of the antioxidant response gene NRF2 as well as the mitochondrial marker porin. CONCLUSIONS: These data show that CAW can increase synaptic density as well as antioxidant and mitochondrial proteins and improve multiple facets of age-related cognitive impairment. Because mitochondrial dysfunction and oxidative stress also accompany cognitive impairment in many pathological conditions this suggests a broad therapeutic utility of CAW.


Assuntos
Centella , Função Executiva/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antioxidantes/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/fisiopatologia , Feminino , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/fisiopatologia , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Percepção Olfatória/fisiologia , Estresse Oxidativo/fisiologia , Extratos Vegetais , Córtex Pré-Frontal/efeitos dos fármacos , Reversão de Aprendizagem/efeitos dos fármacos , Sinapses/efeitos dos fármacos
12.
Phytochem Rev ; 17(1): 161-194, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31736679

RESUMO

This review describes in detail the phytochemistry and neurological effects of the medicinal herb Centella asiatica (L.) Urban. C. asiatica is a small perennial plant that grows in moist, tropical and sub-tropical regions throughout the world. Phytochemicals identified from C. asiatica to date include isoprenoids (sesquiterpenes, plant sterols, pentacyclic triterpenoids and saponins) and phenylpropanoid derivatives (eugenol derivatives, caffeoylquinic acids, and flavonoids). Contemporary methods for fingerprinting and characterization of compounds in C. asiatica extracts include liquid chromatography and/or ion mobility spectrometry in conjunction with high-resolution mass spectrometry. Multiple studies in rodent models, and a limited number of human studies support C. asiatica's traditional reputation as a cognitive enhancer, as well as its anxiolytic and anticonvulsant effects. Neuroprotective effects of C.asiatica are seen in several in vitro models, for example against beta amyloid toxicity, and appear to be associated with increased mitochondrial activity, improved antioxidant status, and/or inhibition of the pro-inflammatory enzyme, phospholipase A2. Neurotropic effects of C. asiatica include increased dendritic arborization and synaptogenesis, and may be due to modulations of signal transduction pathways such as ERK1/2 and Akt. Many of these neurotropic and neuroprotective properties of C.asiatica have been associated with the triterpene compounds asiatic acid, asiaticoside and madecassoside. More recently, caffeoylquinic acids are emerging as a second important group of active compounds in C. asiatica, with the potential of enhancing the Nrf2-antioxidant response pathway. The absorption, distribution, metabolism and excretion of the triterpenes, caffeoylquinic acids and flavonoids found in C. asiatica have been studied in humans and animal models, and the compounds or their metabolites found in the brain. This review highlights the remarkable potential for C. asiatica extracts and derivatives to be used in the treatment of neurological conditions, and considers the further research needed to actualize this possibility.

13.
Oxid Med Cell Longev ; 2017: 7023091, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28883904

RESUMO

Centella asiatica has been used for centuries to enhance memory. We have previously shown that a water extract of Centella asiatica (CAW) protects against the deleterious effects of amyloid-ß (Aß) in neuroblastoma cells and attenuates Aß-induced cognitive deficits in mice. Yet, the neuroprotective mechanism of CAW has yet to be thoroughly explored in neurons from these animals. This study investigates the effects of CAW on neuronal metabolism and oxidative stress in isolated Aß-expressing neurons. Hippocampal neurons from amyloid precursor protein overexpressing Tg2576 mice and wild-type (WT) littermates were treated with CAW. In both genotypes, CAW increased the expression of antioxidant response genes which attenuated the Aß-induced elevations in reactive oxygen species (ROS) and lipid peroxidation in Tg2576 neurons. CAW also improved mitochondrial function in both genotypes and increased the expression of electron transport chain enzymes and mitochondrial labeling, suggesting an increase in mitochondrial content. These data show that CAW protects against mitochondrial dysfunction and oxidative stress in Aß-exposed hippocampal neurons which could contribute to the beneficial effects of the extract observed in vivo. Since CAW also improved mitochondrial function in the absence of Aß, these results suggest a broader utility for other conditions where neuronal mitochondrial dysfunction occurs.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Hipocampo/citologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Triterpenos/farmacologia , Animais , Centella , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais , Espécies Reativas de Oxigênio/metabolismo
14.
Neurosci Lett ; 646: 24-29, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28279707

RESUMO

The medicinal plant Centella asiatica has long been used to improve memory and cognitive function. We have previously shown that a water extract from the plant (CAW) is neuroprotective against the deleterious cognitive effects of amyloid-ß (Aß) exposure in a mouse model of Alzheimer's disease, and improves learning and memory in healthy aged mice as well. This study explores the physiological underpinnings of those effects by examining how CAW, as well as chemical compounds found within the extract, modulate synaptic health in Aß-exposed neurons. Hippocampal neurons from amyloid precursor protein over-expressing Tg2576 mice and their wild-type (WT) littermates were used to investigate the effect of CAW and various compounds found within the extract on Aß-induced dendritic simplification and synaptic loss. CAW enhanced arborization and spine densities in WT neurons and prevented the diminished outgrowth of dendrites and loss of spines caused by Aß exposure in Tg2576 neurons. Triterpene compounds present in CAW were found to similarly improve arborization although they did not affect spine density. In contrast caffeoylquinic acid (CQA) compounds from CAW were able to modulate both of these endpoints, although there was specificity as to which CQAs mediated which effect. These data suggest that CAW, and several of the compounds found therein, can improve dendritic arborization and synaptic differentiation in the context of Aß exposure which may underlie the cognitive improvement observed in response to the extract in vivo. Additionally, since CAW, and its constituent compounds, also improved these endpoints in WT neurons, these results may point to a broader therapeutic utility of the extract beyond Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Centella , Espinhas Dendríticas/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Centella/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos Transgênicos
15.
J Alzheimers Dis ; 51(2): 391-403, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26890746

RESUMO

Because STX is a selective ligand for membrane estrogen receptors, it may be able to confer the beneficial effects of estrogen without eliciting the deleterious side effects associated with activation of the nuclear estrogen receptors. This study evaluates the neuroprotective properties of STX in the context of amyloid-ß (Aß) exposure. MC65 and SH-SY5Y neuroblastoma cell lines, as well as primary hippocampal neurons from wild type (WT) and Tg2576 mice, were used to investigate the ability of STX to attenuate cell death, mitochondrial dysfunction, dendritic simplification, and synaptic loss induced by Aß. STX prevented Aß-induced cell death in both neuroblastoma cell lines; it also normalized the decrease in ATP and mitochondrial gene expression caused by Aß in these cells. Notably, STX also increased ATP content and mitochondrial gene expression in control neuroblastoma cells (in the absence of Aß). Likewise in primary neurons, STX increased ATP levels and mitochondrial gene expression in both genotypes. In addition, STX treatment enhanced dendritic arborization and spine densities in WT neurons and prevented the diminished outgrowth of dendrites caused by Aß exposure in Tg2576 neurons. These data suggest that STX can act as an effective neuroprotective agent in the context of Aß toxicity, improving mitochondrial function as well as dendritic growth and synaptic differentiation. In addition, since STX also improved these endpoints in the absence of Aß, this compound may have broader therapeutic value beyond Alzheimer's disease.


Assuntos
Acrilamidas/farmacologia , Peptídeos beta-Amiloides/toxicidade , Moduladores de Receptor Estrogênico/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Genes Mitocondriais/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Neurônios/patologia , Neurônios/fisiologia
16.
J Ethnopharmacol ; 180: 78-86, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26785167

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: This study investigates the cognitive enhancing effects of the plant Centella asiatica which is widely used Ayurvedic and traditional Chinese medicine. AIM OF THE STUDY: The goal of this study was to determine the effects of a water extract of the medicinal plant Centella asiatica (CAW) on cognitive ability as well as mitochondrial and antioxidant response pathways in vivo. MATERIALS AND METHODS: Old and young C57BL/6 mice were treated with CAW (2mg/mL) in their drinking water. Learning and memory was assessed using Morris Water Maze (MWM) and then tissue was collected and gene expression analyzed. RESULTS: CAW improved performance in the MWM in aged animals and had a modest effect on the performance of young animals. CAW also increased the expression of mitochondrial and antioxidant response genes in the brain and liver of both young and old animals. Expression of synaptic markers was also increased in the hippocampus and frontal cortex, but not in the cerebellum of CAW-treated animals. CONCLUSIONS: These data indicate a cognitive enhancing effect of CAW in healthy mice. The gene expression changes caused by CAW suggest a possible effect on mitochondrial biogenesis, which in conjunction with activation of antioxidant response genes could contribute to cognitive improvement.


Assuntos
Nootrópicos/farmacologia , Triterpenos/farmacologia , Envelhecimento/fisiologia , Animais , Centella , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cognição/efeitos dos fármacos , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Extratos Vegetais
17.
J Alzheimers Dis ; 45(3): 933-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25633675

RESUMO

BACKGROUND: We previously showed that a water extract of the medicinal plant Centella asiatica (CAW) attenuates amyloid-ß (Aß)-induced cognitive deficits in vivo, and prevents Aß-induced cytotoxicity in vitro. Yet the neuroprotective mechanism of CAW is unknown. OBJECTIVE: The goal of this study was to identify biochemical pathways altered by CAW using in vitro models of Aß toxicity. METHODS: The effects of CAW on aberrations in antioxidant response, calcium homeostasis, and mitochondrial function induced by Aß were evaluated in MC65 and SH-SY5Y neuroblastoma cells. RESULTS: CAW decreased intracellular reactive oxygen species and calcium levels elevated in response to Aß, and induced the expression of antioxidant response genes in both cell lines. In SH-SY5Y cells, CAW increased basal and maximal oxygen consumption without altering spare capacity, and attenuated Aß-induced decreases in mitochondrial respiration. CAW also prevented Aß-induced decreases in ATP and induced the expression of mitochondrial genes and proteins in both cell types. Caffeoylquinic acids from CAW were shown to have a similar effect on antioxidant and mitochondrial gene expression in neuroblastoma cells. Primary rat hippocampal neurons treated with CAW also showed an increase in mitochondrial and antioxidant gene expression. CONCLUSIONS: These data suggest an effect of CAW on mitochondrial biogenesis, which in conjunction with activation of antioxidant response genes and normalizing calcium homeostasis, likely contributes to its neuroprotective action against Aß toxicity.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Triterpenos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Centella/química , Embrião de Mamíferos , Hipocampo/citologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Neuroblastoma/patologia , Extratos Vegetais , Fatores de Tempo
18.
J Alzheimers Dis ; 40(2): 359-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24448790

RESUMO

The accumulation of amyloid-ß (Aß) is a hallmark of Alzheimer's disease and is known to result in neurotoxicity both in vivo and in vitro. We previously demonstrated that treatment with the water extract of Centella asiatica (CAW) improves learning and memory deficits in Tg2576 mice, an animal model of Aß accumulation. However the active compounds in CAW remain unknown. Here we used two in vitro models of Aß toxicity to confirm this neuroprotective effect and identify several active constituents of the CAW extract. CAW reduced Aß-induced cell death and attenuated Aß-induced changes in tau expression and phosphorylation in both the MC65 and SH-SY5Y neuroblastoma cell lines. We confirmed and quantified the presence of several mono- and dicaffeoylquinic acids (CQAs) in CAW using chromatographic separation coupled to mass spectrometry and ultraviolet spectroscopy. Multiple dicaffeoylquinic acids showed efficacy in protecting MC65 cells against Aß-induced cytotoxicity. Isochlorogenic acid A and 1,5-dicaffeoylquinic acid were found to be the most abundant CQAs in CAW, and the most active in protecting MC65 cells from Aß-induced cell death. Both compounds showed neuroprotective activity in MC65 and SH-SY5Y cells at concentrations comparable to their levels in CAW. Each compound not only mitigated Aß-induced cell death, but was able to attenuate Aß-induced alterations in tau expression and phosphorylation in both cell lines, as seen with CAW. These data suggest that CQAs are active neuroprotective components in CAW, and therefore are important markers for future studies on CAW standardization, bioavailability, and dosing.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Centella/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ácido Quínico/análogos & derivados , Morte Celular/efeitos dos fármacos , Linhagem Celular Transformada , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/farmacologia , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Humanos , Neuroblastoma , Fármacos Neuroprotetores/química , Ácido Quínico/farmacologia , Proteínas tau/genética , Proteínas tau/metabolismo
19.
Cancer Prev Res (Phila) ; 2(2): 134-42, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19141600

RESUMO

Dehydroepiandrosterone (DHEA) is used as a dietary supplement and can be metabolized to androgens and/or estrogens in the prostate. We investigated the hypothesis that DHEA metabolism may be increased in a reactive prostate stroma environment in the presence of proinflammatory cytokines such as transforming growth factor beta1 (TGFbeta1), and further, whether red clover extract, which contains a variety of compounds including isoflavones, can reverse this effect. LAPC-4 prostate cancer cells were grown in coculture with prostate stromal cells (6S) and treated with DHEA +/- TGFbeta1 or interleukin-6. Prostate-specific antigen (PSA) expression and testosterone secretion in LAPC-4/6S cocultures were compared with those in monocultured epithelial and stromal cells by real-time PCR and/or ELISA. Combined administration of TGFbeta1 + DHEA to cocultures increased PSA protein secretion two to four times, and PSA gene expression up to 50-fold. DHEA + TGFbeta1 also increased coculture production of testosterone over DHEA treatment alone. Red clover isoflavone treatment led to a dose-dependent decrease in PSA protein and gene expression and testosterone metabolism induced by TGFbeta1 + DHEA in prostate LAPC-4/6S cocultures. In this coculture model of endocrine-immune-paracrine interactions in the prostate, TGFbeta1 greatly increased stromal-mediated DHEA effects on testosterone production and epithelial cell PSA production, whereas red clover isoflavones reversed these effects.


Assuntos
Proteínas da Matriz Extracelular/farmacologia , Interleucina-6/farmacologia , Fitoterapia , Extratos Vegetais/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Adjuvantes Imunológicos/farmacologia , Células Cultivadas , Técnicas de Cocultura , Desidroepiandrosterona/farmacologia , Sistema Endócrino/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Masculino , Comunicação Parácrina , Próstata/citologia , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/patologia , Células Estromais/citologia , Células Estromais/metabolismo , Syzygium/química , Testosterona/metabolismo
20.
J Steroid Biochem Mol Biol ; 111(3-5): 240-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18621129

RESUMO

Dehydroepiandrosterone (DHEA) is commonly used as a dietary supplement and may affect prostate pathophysiology when metabolized to androgens and/or estrogens. Human prostate LAPC-4 cancer cells with a wild type androgen receptor (AR) were treated with DHEA, androgens dihydrotestosterone (DHT), T, or R1881), and E2 and assayed for prostate specific antigen (PSA) protein and gene expression. In LAPC-4 monocultures, DHEA and E2 induced little or no increase in PSA protein or mRNA expression compared to androgen-treated cells. When prostate cancer-associated (6S) stromal cells were added in coculture, DHEA stimulated LAPC-4 cell PSA protein secretion to levels approaching induction by DHT. Also, DHEA induced 15-fold more PSA mRNA in LAPC-4 cocultures than in monocultures. LAPC-4 proliferation was increased 2-3-fold when cocultured with 6S stromal cells regardless of hormone treatment. DHEA-treated 6S stromal cells exhibited a dose- and time-dependent increase in T secretion, demonstrating stromal cell metabolism of DHEA to T. Coculture with non-cancerous stroma did not induce LAPC-4 PSA production, suggesting a differential modulation of DHEA effect in a cancer-associated prostate stromal environment. This coculture model provides a research approach to reveal detailed endocrine, intracrine, and paracrine signaling between stromal and epithelial cells that regulate tissue homeostasis within the prostate, and the role of the tumor microenvironment in cancer progression.


Assuntos
Desidroepiandrosterona/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Antígeno Prostático Específico/metabolismo , Próstata/citologia , Neoplasias da Próstata/metabolismo , Células Estromais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Células Epiteliais/citologia , Humanos , Masculino , Neoplasias da Próstata/patologia , Células Estromais/citologia , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA