Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 238(7): 1558-1566, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183313

RESUMO

Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, participates as a cofactor to one carbon (1C) pathway that produces precursors for DNA metabolism. The concerted action of PLP-dependent serine hydroxymethyltransferase (SHMT) and thymidylate synthase (TS) leads to the biosynthesis of thymidylate (dTMP), which plays an essential function in DNA synthesis and repair. PLP deficiency causes chromosome aberrations (CABs) in Drosophila and human cells, rising the hypothesis that an altered 1C metabolism may be involved. To test this hypothesis, we used Drosophila as a model system and found, firstly, that in PLP deficient larvae SHMT activity is reduced by 40%. Second, we found that RNAi-induced SHMT depletion causes chromosome damage rescued by PLP supplementation and strongly exacerbated by PLP depletion. RNAi-induced TS depletion causes severe chromosome damage, but this is only slightly enhanced by PLP depletion. dTMP supplementation rescues CABs in both PLP-deficient and PLP-proficient SHMTRNAi . Altogether these data suggest that a reduction of SHMT activity caused by PLP deficiency contributes to chromosome damage by reducing dTMP biosynthesis. In addition, our work brings to light a gene-nutrient interaction between SHMT decreased activity and PLP deficiency impacting on genome stability that may be translated to humans.


Assuntos
Aberrações Cromossômicas , Glicina Hidroximetiltransferase , Vitamina B 6 , Animais , Humanos , DNA , Drosophila/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Fosfato de Piridoxal , Timidina Monofosfato/biossíntese , Vitamina B 6/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA