RESUMO
Ferroptosis, a form of iron-dependent, lipid peroxidation-driven cell death, has been extensively investigated in recent years, and several studies have suggested that the ferroptosis-inducing properties of iron-containing nanomaterials could be harnessed for cancer treatment. Here we evaluated the potential cytotoxicity of iron oxide nanoparticles, with and without cobalt functionalization (Fe2O3 and Fe2O3@Co-PEG), using an established, ferroptosis-sensitive fibrosarcoma cell line (HT1080) and a normal fibroblast cell line (BJ). In addition, we evaluated poly (ethylene glycol) (PEG)-poly(lactic-co-glycolic acid) (PLGA)-coated iron oxide nanoparticles (Fe3O4-PEG-PLGA). Our results showed that all the nanoparticles tested were essentially non-cytotoxic at concentrations up to 100 µg/mL. However, when the cells were exposed to higher concentrations (200-400 µg/mL), cell death with features of ferroptosis was observed, and this was more pronounced for the Co-functionalized nanoparticles. Furthermore, evidence was provided that the cell death triggered by the nanoparticles was autophagy-dependent. Taken together, the exposure to high concentrations of polymer-coated iron oxide nanoparticles triggers ferroptosis in susceptible human cancer cells.
RESUMO
The contactless heating capacity of magnetic nanoparticles (MNPs) has been exploited in fields such as hyperthermia cancer therapy, catalysis, and enzymatic thermal regulation. Herein, we propose an advanced technology to generate multiple local temperatures in a single-pot reactor by exploiting the unique nanoheating features of iron oxide MNPs exposed to alternating magnetic fields (AMFs). The heating power of the MNPs depends on their magnetic features but also on the intensity and frequency conditions of the AMF. Using a mixture of diluted colloids of MNPs we were able to generate a multi-hot-spot reactor in which each population of MNPs can be selectively activated by adjusting the AMF conditions. The maximum temperature reached at the surface of each MNP was registered using independent fluorescent thermometers that mimic the molecular link between enzymes and MNPs. This technology paves the path for the implementation of a selective regulation of multienzymatic reactions.
Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , MagnetismoRESUMO
Magnetic hyperthermia (MH) was used to treat a murine model of pancreatic cancer. This type of cancer is generally characterized by the presence of dense stroma that acts as a barrier for chemotherapeutic treatments. Several alternating magnetic field (AMF) conditions were evaluated using three-dimensional (3D) cell culture models loaded with magnetic nanoparticles (MNPs) to determine which conditions were producing a strong effect on the cell viability. Once the optimal AMF conditions were selected, in vivo experiments were carried out using similar frequency and field amplitude parameters. A marker of the immune response activation, calreticulin (CALR), was evaluated in cells from a xenograft tumor model after the MH treatment. Moreover, the distribution of nanoparticles within the tumor tissue was assessed by histological analysis of tumor sections, observing that the exposure to the alternating magnetic field resulted in the migration of particles toward the inner parts of the tumor. Finally, a relationship between an inadequate body biodistribution of the particles after their intratumoral injection and a significant decrease in the effectiveness of the MH treatment was found. Animals in which most of the particles remained in the tumor area after injection showed higher reductions in the tumor volume growth in comparison with those animals in which part of the particles were found also in the liver and spleen. Therefore, our results point out several factors that should be considered to improve the treatment effectiveness of pancreatic cancer by magnetic hyperthermia.
Assuntos
Hipertermia Induzida/métodos , Nanopartículas Magnéticas de Óxido de Ferro , Neoplasias Pancreáticas/terapia , Animais , Linhagem Celular Tumoral , Humanos , Imunidade , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro/análise , Masculino , Camundongos Nus , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologiaRESUMO
Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1-7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.
Assuntos
Apoptose/efeitos dos fármacos , Hipertermia Induzida , Macrófagos/efeitos dos fármacos , Nanopartículas de Magnetita/química , Animais , Células Cultivadas , Cinética , Campos Magnéticos , Camundongos , Método de Monte Carlo , Tamanho da Partícula , Células RAW 264.7 , Propriedades de SuperfícieRESUMO
Hybrid and composite nanoparticles represent an attractive material for enzyme integration due to possible synergic advantages of the structural builders in the properties of the nanobiocatalyst. In this study, we report the synthesis of a new stable hybrid nanobiocatalyst formed by biomimetic silica (Si) nanoparticles entrapping both Horseradish Peroxidase (HRP) (EC 1.11.1.7) and magnetic nanoparticles (MNPs). We have demonstrated that tailoring of the synthetic reagents and post immobilization treatments greatly impacted physical and biocatalytic properties such as an unprecedented ~280 times increase in the half-life time in thermal stability experiments. The optimized nanohybrid biocatalyst that showed superparamagnetic behaviour, was effective in the batch conversion of indole-3-acetic acid, a prodrug used in Direct Enzyme Prodrug Therapy (DEPT). Our system, that was not cytotoxic per se, showed enhanced cytotoxic activity in the presence of the prodrug towards HCT-116, a colorectal cancer cell line. The strategy developed proved to be effective in obtaining a stabilized nanobiocatalyst combining three different organic/inorganic materials with potential in DEPT and other biotechnological applications.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Nanocompostos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Biocatálise , Avaliação Pré-Clínica de Medicamentos , Enzimas Imobilizadas/metabolismo , Células HCT116 , Meia-Vida , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Ácidos Indolacéticos/administração & dosagem , Ácidos Indolacéticos/metabolismo , Nanopartículas de Magnetita/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/metabolismo , Dióxido de Silício/químicaRESUMO
Magnetic nanoparticles (MNPs) are promising tools for a wide array of biomedical applications. One of their most outstanding properties is the ability to generate heat when exposed to alternating magnetic fields, usually exploited in magnetic hyperthermia therapy of cancer. In this contribution, we provide a critical review of the use of MNPs and magnetic hyperthermia as drug release and gene expression triggers for cancer therapy. Several strategies for the release of chemotherapeutic drugs from thermo-responsive matrices are discussed, providing representative examples of their application at different levels (from proof of concept to in vivo applications). The potential of magnetic hyperthermia to promote in situ expression of therapeutic genes using vectors that contain heat-responsive promoters is also reviewed in the context of cancer gene therapy.
Assuntos
Antineoplásicos/química , Regulação Neoplásica da Expressão Gênica , Hipertermia Induzida , Neoplasias/genética , Neoplasias/terapia , Animais , Liberação Controlada de Fármacos , Humanos , Campos Magnéticos , TemperaturaRESUMO
Magnetic hyperthermia is a promising therapy for the localized treatment of cancer based on the exposure of magnetic nanoparticles to an external alternating magnetic field. In order to evaluate some of the mechanisms involved in the cellular damage caused by this treatment, two different 3D cell culture models were prepared using collagen, which is the most abundant protein of the extracellular matrix. The same amount of nanoparticles was added to cells either before or after their incorporation into the 3D structure. Therefore, in one model, particles were located only inside cells (In model), while the other one had particles both inside and outside cells (In&Out model). In the In&Out model, the hyperthermia treatment facilitated the migration of the particles from the outer areas of the 3D structure to the inner parts, achieving a faster homogeneous distribution throughout the whole structure and allowing the particles to gain access to the inner cells. The cell death mechanism activated by the magnetic hyperthermia treatment was different in both models. Necrosis was observed in the In model and apoptosis in the In&Out model 24 h after the hyperthermia application. This was clearly correlated with the amount of nanoparticles located inside the cells. Thus, the combination of both 3D models allowed us to demonstrate two different roles of the magnetic particles during the hyperthermia treatment: (i) The modulation of the cell death mechanism depending on the amount of intracellular particles and (ii) the disruption of the collagen matrix caused by the extracellular nanoparticles.
Assuntos
Técnicas de Cultura de Células , Matriz Extracelular , Hipertermia Induzida , Nanopartículas de Magnetita , Modelos Biológicos , Neoplasias , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapiaRESUMO
Fungal lectins constitute excellent ligands for development of affinity adsorbents useful in affinity chromatography. In this work, a lectin was purified from Pycnoporus sanguineus (PSL) mycelium using 3 procedures: by affinity chromatography, using magnetic galactosyl-nanoparticles or galactose coupled to Sepharose, and by ionic exchange chromatography (IEC). The highest lectin yield was achieved by IEC (55%); SDS-PAGE of PSL showed 2 bands with molecular mass of 68.7 and 55.2 kDa and IEC displayed 2 bands at pi 5.5 and 5.2. The lectin agglutinates rat erythrocytes, exhibiting broad specificity toward several monosaccharides, including galactose. The agglutination was also inhibited by the glycoproteins fetal calf fetuin, bovine lactoferrin, bovine transferrin, and horseradish peroxidase. The lectin was then used to synthesize an affinity adsorbent (PSL-Sepharose) and the interaction with glycoproteins was evaluated by analyzing their chromatographic behaviors. The strongest interaction with the PSL-derivative was observed with transferrin, although lower interactions were also displayed toward fetuin and lactoferrin. These results indicate that the purified PSL constitutes an interesting ligand for the design of affinity adsorbents to be used (i.e., in glycoprotein purification).
Assuntos
Lectinas/isolamento & purificação , Pycnoporus/química , Transferrina/metabolismo , Aglutinação/efeitos dos fármacos , Animais , Bovinos , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Eritrócitos/efeitos dos fármacos , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Glicoproteínas/isolamento & purificação , Glicoproteínas/metabolismo , Lectinas/metabolismo , Ligantes , Peso Molecular , Micélio/química , RatosRESUMO
In vitro primary screening for identifying bioactive compounds (inhibitors, activators or pharmacological chaperones) against a protein target results in the discovery of lead compounds that must be tested in cell-based efficacy secondary screenings. Very often lead compounds do not succeed because of an apparent low potency in cell assays, despite an excellent performance in primary screening. Primary and secondary screenings differ significantly according to the conditions and challenges the compounds must overcome in order to interact with their intended target. Cellular internalization and intracellular metabolism are some of the difficulties the compounds must confront and different strategies can be envisaged for minimizing that problem. Using a novel screening procedure we have identified 15 compounds inhibiting the hepatitis C NS3 protease in an allosteric fashion. After characterizing biophysically the interaction with the target, some of the compounds were not able to inhibit viral replication in cell assays. In order to overcome this obstacle and potentially improve cellular internalization three of these compounds were complexed with γ-cyclodextrin. Two of them showed a five- and 16-fold activity increase, compared to their activity when delivered as free compounds in solution (while γ-cyclodextrin did not show antiviral activity by itself). The most remarkable result came from a third compound that showed no antiviral activity in cell assays when delivered free in solution, but its γ-cyclodextrin complex exhibited a 50% effective concentration of 5 µM. Thus, the antiviral activity of these compounds can be significantly improved, even completely rescued, using γ-cyclodextrin as carrier molecule.
Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , gama-Ciclodextrinas/metabolismo , Antivirais/química , Linhagem Celular , Hepacivirus/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , gama-Ciclodextrinas/químicaRESUMO
Too hot to handle: The surroundings of magnetic nanoparticles can be heated by applying a magnetic field. Polymer-coated magnetic nanoparticles were functionalized with single-stranded DNA molecules and further hybridized with DNA modified with different fluorophores. By correlating the denaturation profiles of the DNA with the local temperature, temperature gradients for the vicinity of the excited nanoparticles were determined.