Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
PLoS One ; 17(7): e0270862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797357

RESUMO

INTRODUCTION: Integrating training on health equity of sexual and gender minorities (SGM) in medical education has been challenging globally despite emphasis on the need for medical students to develop competence to provide adequate care for diverse patient groups. This study elicits Taiwanese medical students' perceptions of their values and preparedness to care for Lesbian, Gay, Bisexual, or Transgender (LGBT) patients using a qualitative approach that considers broader societal changes, and more focused topics such as the provision of relevant training in medical education. METHODS: Eighty-nine medical students/trainees from two southern Taiwanese medical schools (one public and one private) participated in focus groups (n = 70) and individual interviews (n = 19). Qualitative analysis was conducted using inductive thematic analysis. RESULTS: Participants (i) expressed wide social acceptance and openness toward LGBT individuals, but were unsure of ways to communicate with LGBT patients; (ii) confirmed that stigmatization and biases might be developed during their training; (iii) recognized gender stereotypes could have negative impacts on clinical reasoning; (iv) considered themselves prepared to care for LGBT patients, yet equated non-discriminatory attitudes to preparedness; (v) acknowledged a lack of relevant professional skills; (vi) implicated curriculum did not address LGBT issues systematically and explicitly. CONCLUSION: This study has identified the insufficiencies of current medical training and inadequate preparedness of medical students/trainees to provide better care for LGBT patients. It provides insights for medical educators to design and implement effective medical curriculum and training, and faculty development programs to equip medical students/trainees with self-awareness and competencies to more readily provide holistic care for SGM, in keeping up with social progress, and promote health equity for a more diverse patient population.


Assuntos
Educação Médica , Minorias Sexuais e de Gênero , Estudantes de Medicina , Pessoas Transgênero , Currículo , Feminino , Promoção da Saúde , Humanos , Taiwan
3.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35024765

RESUMO

Protein lysine acetylation is a post-translational modification that regulates protein structure and function. It is targeted to proteins by lysine acetyltransferases (KATs) or removed by lysine deacetylases. This work identifies a role for the KAT enzyme general control of amino acid synthesis protein 5 (GCN5; KAT2A) in regulating muscle integrity by inhibiting DNA binding of the transcription factor/repressor Yin Yang 1 (YY1). Here we report that a muscle-specific mouse knockout of GCN5 (Gcn5skm-/-) reduces the expression of key structural muscle proteins, including dystrophin, resulting in myopathy. GCN5 was found to acetylate YY1 at two residues (K392 and K393), disrupting the interaction between the YY1 zinc finger region and DNA. These findings were supported by human data, including an observed negative correlation between YY1 gene expression and muscle fiber diameter. Collectively, GCN5 positively regulates muscle integrity through maintenance of structural protein expression via acetylation-dependent inhibition of YY1. This work implicates the role of protein acetylation in the regulation of muscle health and for consideration in the design of novel therapeutic strategies to support healthy muscle during myopathy or aging.


Assuntos
Distrofina/genética , Músculos/metabolismo , Fator de Transcrição YY1/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Envelhecimento/metabolismo , Animais , DNA/metabolismo , Distrofina/metabolismo , Regulação da Expressão Gênica , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculos/patologia , Músculos/ultraestrutura , Atrofia Muscular/patologia , Distrofias Musculares/patologia , Transcriptoma/genética , Fatores de Transcrição de p300-CBP/deficiência
4.
Neuromodulation ; 25(1): 35-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35041587

RESUMO

INTRODUCTION: The International Neuromodulation Society convened a multispecialty group of physicians based on expertise with international representation to establish evidence-based guidance on the use of neurostimulation in the cervical region to improve outcomes. This Neurostimulation Appropriateness Consensus Committee (NACC) project intends to provide evidence-based guidance for an often-overlooked area of neurostimulation practice. MATERIALS AND METHODS: Authors were chosen based upon their clinical expertise, familiarity with the peer-reviewed literature, research productivity, and contributions to the neuromodulation literature. Section leaders supervised literature searches of MEDLINE, BioMed Central, Current Contents Connect, Embase, International Pharmaceutical Abstracts, Web of Science, Google Scholar, and PubMed from 2017 (when NACC last published guidelines) to the present. Identified studies were graded using the US Preventive Services Task Force criteria for evidence and certainty of net benefit. Recommendations are based on the strength of evidence or consensus when evidence was scant. RESULTS: The NACC examined the published literature and established evidence- and consensus-based recommendations to guide best practices. Additional guidance will occur as new evidence is developed in future iterations of this process. CONCLUSIONS: The NACC recommends best practices regarding the use of cervical neuromodulation to improve safety and efficacy. The evidence- and consensus-based recommendations should be utilized as a guide to assist decision making when clinically appropriate.


Assuntos
Terapia por Estimulação Elétrica , Consenso , Humanos
5.
Exp Neurol ; 351: 113977, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35016994

RESUMO

There is growing interest in using adaptive neuromodulation to provide a more personalized therapy experience that might improve patient outcomes. Current implant technology, however, can be limited in its adaptive algorithm capability. To enable exploration of adaptive algorithms with chronic implants, we designed and validated the 'Picostim DyNeuMo Mk-1' (DyNeuMo Mk-1 for short), a fully-implantable, adaptive research stimulator that titrates stimulation based on circadian rhythms (e.g. sleep, wake) and the patient's movement state (e.g. posture, activity, shock, free-fall). The design leverages off-the-shelf consumer technology that provides inertial sensing with low-power, high reliability, and relatively modest cost. The DyNeuMo Mk-1 system was designed, manufactured and verified using ISO 13485 design controls, including ISO 14971 risk management techniques to ensure patient safety, while enabling novel algorithms. The system was validated for an intended use case in movement disorders under an emergency-device authorization from the Medicines and Healthcare Products Regulatory Agency (MHRA). The algorithm configurability and expanded stimulation parameter space allows for a number of applications to be explored in both central and peripheral applications. Intended applications include adaptive stimulation for movement disorders, synchronizing stimulation with circadian patterns, and reacting to transient inertial events such as posture changes, general activity, and walking. With appropriate design controls in place, first-in-human research trials are now being prepared to explore the utility of automated motion-adaptive algorithms.


Assuntos
Encéfalo , Transtornos dos Movimentos , Algoritmos , Encéfalo/fisiologia , Cronoterapia , Humanos , Reprodutibilidade dos Testes
6.
Mov Disord ; 36(4): 863-873, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33547859

RESUMO

BACKGROUND: High-frequency thalamic stimulation is an effective therapy for essential tremor, which mainly affects voluntary movements and/or sustained postures. However, continuous stimulation may deliver unnecessary current to the brain due to the intermittent nature of the tremor. OBJECTIVE: We proposed to close the loop of thalamic stimulation by detecting tremor-provoking movement states using local field potentials recorded from the same electrodes implanted for stimulation, so that the stimulation is only delivered when necessary. METHODS: Eight patients with essential tremor participated in this study. Patient-specific support vector machine classifiers were first trained using data recorded while the patient performed tremor-provoking movements. Then, the trained models were applied in real-time to detect these movements and triggered the delivery of stimulation. RESULTS: Using the proposed method, stimulation was switched on for 80.37 ± 7.06% of the time when tremor-evoking movements were present. In comparison, the stimulation was switched on for 12.71 ± 7.06% of the time when the patients were at rest and tremor-free. Compared with continuous stimulation, a similar amount of tremor suppression was achieved while only delivering 36.62 ± 13.49% of the energy used in continuous stimulation. CONCLUSIONS: The results suggest that responsive thalamic stimulation for essential tremor based on tremor-provoking movement detection can be achieved without any requirement for external sensors or additional electrocorticography strips. Further research is required to investigate whether the decoding model is stable across time and generalizable to the variety of activities patients may engage with in everyday life. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Tremor Essencial/terapia , Humanos , Movimento , Tálamo , Tremor/terapia
7.
Eur J Neurosci ; 51(2): 628-640, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483893

RESUMO

Understanding the functional dynamics of neural oscillations in the sensory thalamus is essential for elucidating the perception and modulation of neuropathic pain. Local field potentials were recorded from the sensory thalamus of twelve neuropathic pain patients. Single and combinational neural states were defined by the activity state of a single or paired oscillations. Relationships between the duration or occurrence rate of neural state and pre-operative pain level or pain relief induced by deep brain stimulation were evaluated. Results showed that the occurrence rate of the single neural state of low-beta oscillation was significantly correlated with pain relief. The duration and occurrence rate of combinational neural states of the paired low-beta with delta, theta, alpha, high-beta or low-gamma oscillations were more significantly correlated with pain relief than the single neural states. Moreover, these significant combinational neural states formed a local oscillatory network with low-beta oscillation as a key node. The results also showed correlations between measures of combinational neural states and subjective pain level as well. The duration of combinational neural states of paired alpha with delta or theta oscillations and the occurrence rate of neural states of the paired delta with low-beta or low-gamma oscillations were significantly correlated with pre-operative pain level. In conclusion, this study revealed that the integration of oscillations and the functional dynamics of neural states were differentially involved in modulation and perception of neuropathic pain. The functional dynamics could be biomarkers for developing neural state-dependent deep brain stimulation for neuropathic pain.


Assuntos
Neuralgia , Tálamo , Humanos , Neuralgia/terapia
8.
J Clin Neurosci ; 68: 342-343, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31331745

RESUMO

The periaqueductal grey area and sensory thalamus are thought to be important nuclei involved in the supraspinal bladder control network. Deep brain stimulation of the periqueductal grey area has been shown to increase bladder capacity in the human. In a single patient, we have recorded local field potential signals from implanted deep brain stimulation electrodes within the sensory thalamus during filling cystometry with periaqueductal grey area deep brain stimulation in the ON and OFF states. In the OFF stimulation state, we demonstrate correlations between bladder volume and oscillations in the high gamma frequency band in the sensory thalamus. Stimulation of the periaqueductal grey area abolishes this correlated activity in the gamma frequency band and also suppresses oscillations within the sensory thalamus in the alpha frequency band. These findings support the involvement of the sensory thalamus in the afferent limb of bladder-related brain networks. They also suggest that periaqueductal grey area deep brain stimulation may disrupt the normal processing of afferent signals within the sensory thalamus which may be related to the effect of stimulation on bladder capacity.


Assuntos
Estimulação Encefálica Profunda , Substância Cinzenta Periaquedutal/fisiologia , Tálamo/fisiologia , Bexiga Urinária/inervação , Bexiga Urinária/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Membro Fantasma/terapia
9.
Neuromodulation ; 22(5): 638-644, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31199547

RESUMO

BACKGROUND: Occipital nerve stimulation (ONS) is widely used for headache syndromes including chronic migraine (CM) and chronic cluster headache (CCH). The paraesthesia associated with tonic stimulation can be bothersome and can limit therapy. It is now clear in spinal cord stimulation that paraesthesia-free waveforms can produce effective analgesia, but this has not been reported in ONS for CM or CCH. MATERIALS AND METHODS: Seventeen patients (12 CM and 5 CCH) were treated with bilateral burst pattern ONS, including 4 who had previously had tonic ONS. Results were assessed in terms of the frequency of headaches (number of headache days per month for CM, and number of attacks per day for CCH) and their intensity on the numeric pain rating scale. RESULTS: Burst ONS produced a statistically significant mean reduction of 10.2 headache days per month in CM. In CCH, there were significant mean reductions in headache frequency (92%) and intensity (42%). CONCLUSION: Paraesthesia is not necessary for good quality analgesia in ONS. Larger studies will be required to determine whether the efficacies of the two stimulation modes differ. Burst ONS is imperceptible and therefore potentially amenable to robustly blinded clinical trials.


Assuntos
Cefaleia Histamínica/terapia , Terapia por Estimulação Elétrica/métodos , Transtornos de Enxaqueca/terapia , Manejo da Dor/métodos , Nervos Periféricos/fisiologia , Adulto , Idoso , Doença Crônica , Cefaleia Histamínica/diagnóstico , Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/diagnóstico , Manejo da Dor/instrumentação , Estudos Retrospectivos
10.
Neuromodulation ; 22(5): 645-652, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30629320

RESUMO

BACKGROUND: Trigeminal Neuropathic Pain (TNP) is a chronic facial pain syndrome caused by a lesion or disease affecting one or more branches of the trigeminal nerve. It may, for example, result from accidental injury to a branch of the trigeminal nerve by trauma or during surgery; it may also be idiopathic. TNP is typically constant, in contrast to most cases of the commoner trigeminal neuralgia. In some cases, pain may be refractory to pharmacological treatment. Peripheral nerve field stimulation is recognized as an effective minimally invasive surgical treatment option for this debilitating condition. To date, stimulation has used conventional tonic waveforms, which generate paraesthesia in the stimulated area. This is the first report of the use of paraesthesia-free burst pattern stimulation for TNP. METHODS: Seven patients were treated at the John Radcliffe Hospital for TNP from 2016 to 2018. Mean duration of preoperative symptoms was five years. All patients had exhausted pharmacological measures to limited effect. The initial three patients had tonic stimulation with the subsequent four having burst stimulation. Outcome was assessed using the numeric pain rating scale preoperatively and postoperatively at three and six months and one year. Side-effects and complications were also assessed as well as reduction in analgesic medication use. RESULTS: All patients achieved pain reduction of at least 50% at 6 months (range 50-100%, mean 81%, p = 0.0082). Those in the burst stimulation group were paraesthesia free. One patient developed a postoperative infection for which the system had to be removed and is awaiting reimplantation. There were no other complications in either group. CONCLUSION: Burst stimulation conferred similar pain control to tonic stimulation in our small cohort, and there were similar reductions in pain medication use. An additional benefit of burst stimulation is freedom from paraesthesia. Larger scale studies are needed to further evaluate burst stimulation and compare its efficacy with that of tonic stimulation.


Assuntos
Terapia por Estimulação Elétrica/métodos , Neuralgia Facial/terapia , Manejo da Dor/métodos , Nervos Periféricos/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Neuralgia do Trigêmeo/terapia , Adulto , Idoso , Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Neuralgia Facial/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Manejo da Dor/instrumentação , Estimulação Elétrica Nervosa Transcutânea/instrumentação , Resultado do Tratamento , Neuralgia do Trigêmeo/diagnóstico por imagem
11.
J Neurosci ; 38(22): 5111-5121, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29760182

RESUMO

Gait disturbances in Parkinson's disease are commonly refractory to current treatment options and majorly impair patient's quality of life. Auditory cues facilitate gait and prevent motor blocks. We investigated how neural dynamics in the human subthalamic nucleus of Parkinsons's disease patients (14 male, 2 female) vary during stepping and whether rhythmic auditory cues enhance the observed modulation. Oscillations in the beta band were suppressed after ipsilateral heel strikes, when the contralateral foot had to be raised, and reappeared after contralateral heel strikes, when the contralateral foot rested on the floor. The timing of this 20-30 Hz beta modulation was clearly distinct between the left and right subthalamic nucleus, and was alternating within each stepping cycle. This modulation was similar, whether stepping movements were made while sitting, standing, or during gait, confirming the utility of the stepping in place paradigm. During stepping in place, beta modulation increased with auditory cues that assisted patients in timing their steps more regularly. Our results suggest a link between the degree of power modulation within high beta frequency bands and stepping performance. These findings raise the possibility that alternating deep brain stimulation patterns may be superior to constant stimulation for improving parkinsonian gait.SIGNIFICANCE STATEMENT Gait disturbances in Parkinson's disease majorly reduce patients' quality of life and are often refractory to current treatment options. We investigated how neural activity in the subthalamic nucleus of patients who received deep brain stimulation surgery covaries with the stepping cycle. 20-30 Hz beta activity was modulated relative to each step, alternating between the left and right STN. The stepping performance of patients improved when auditory cues were provided, which went along with enhanced beta modulation. This raises the possibility that alternating stimulation patterns may also enhance beta modulation and may be more beneficial for gait control than continuous stimulation, which needs to be tested in future studies.


Assuntos
Ritmo beta , Núcleo Subtalâmico/fisiopatologia , Caminhada , Estimulação Acústica , Idoso , Fenômenos Biomecânicos , Sinais (Psicologia) , Estimulação Encefálica Profunda , Eletrodos Implantados , Retroalimentação Psicológica , Feminino , Marcha/fisiologia , Calcanhar/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Desempenho Psicomotor
12.
Neuromodulation ; 21(3): 225-233, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28960653

RESUMO

OBJECTIVE: Dorsal root ganglion stimulation (DRGS) received its first regulatory approval (CE marking in Europe) in late 2011, and so its use is now almost six years old. Several thousand patients have already been treated, and a landmark trial in lower limb complex regional pain syndrome (CRPS) and causalgia has recently been published. METHODS: In this review we have summarized the literature to date on the use of DRGS in the treatment of neuropathic pain. RESULTS: The results so far are encouraging, with reports of successful use in treating a wide range of indications including postsurgical pain, CRPS, and phantom pain. Treatment of failed back surgery syndrome (FBSS) appears less successful. The therapy is still young, and long term results are not yet available. There is now good randomized clinical trial (RCT) evidence that DRGS provides superior pain relief to spinal cord stimulation for CRPS and causalgia of the lower limb, and produces stimulation that is more posturally stable, with more precise paraesthesia coverage. However evidence of this quality for other indications and pain locations is lacking. CONCLUSION: There is now Class A RCT evidence that DRGS provides superior pain relief to SCS for CRPS and causalgia of the lower limb. In the coming years we hope that randomized controlled trials will be performed on an indication-by-indication basis, which, together with the publication of longer term follow-up data, will provide a more complete understanding of the role of DRGS in the treatment of neuropathic pain syndromes.


Assuntos
Terapia por Estimulação Elétrica/métodos , Gânglios Espinais/fisiologia , Neuralgia/terapia , Manejo da Dor/métodos , Humanos
13.
Neurobiol Dis ; 109(Pt A): 117-126, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29031639

RESUMO

OBJECTIVE: Understanding the function of sensory thalamic neural activity is essential for developing and improving interventions for neuropathic pain. However, there is a lack of investigation of the relationship between sensory thalamic oscillations and pain relief in patients with neuropathic pain. This study aims to identify the oscillatory neural characteristics correlated with pain relief induced by deep brain stimulation (DBS), and develop a quantitative model to predict pain relief by integrating characteristic measures of the neural oscillations. APPROACH: Measures of sensory thalamic local field potentials (LFPs) in thirteen patients with neuropathic pain were screened in three dimensional feature space according to the rhythm, balancing, and coupling neural behaviours, and correlated with pain relief. An integrated approach based on principal component analysis (PCA) and multiple regression analysis is proposed to integrate the multiple measures and provide a predictive model. MAIN RESULTS: This study reveals distinct thalamic rhythms of theta, alpha, high beta and high gamma oscillations correlating with pain relief. The balancing and coupling measures between these neural oscillations were also significantly correlated with pain relief. SIGNIFICANCE: The study enriches the series research on the function of thalamic neural oscillations in neuropathic pain and relief, and provides a quantitative approach for predicting pain relief by DBS using thalamic neural oscillations.


Assuntos
Ondas Encefálicas , Estimulação Encefálica Profunda , Neuralgia/diagnóstico , Neuralgia/fisiopatologia , Tálamo/fisiopatologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuralgia/prevenção & controle , Medição da Dor , Substância Cinzenta Periaquedutal/fisiopatologia , Substância Cinzenta Periaquedutal/cirurgia , Análise de Componente Principal , Análise de Regressão , Índice de Gravidade de Doença , Tálamo/cirurgia
14.
Brain ; 140(1): 132-145, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007997

RESUMO

SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects.


Assuntos
Estimulação Encefálica Profunda/métodos , Distonia/complicações , Tremor Essencial/terapia , Tálamo , Tremor/terapia , Acelerometria , Tremor Essencial/fisiopatologia , Humanos , Tremor/etiologia , Tremor/fisiopatologia
15.
J Neurol Neurosurg Psychiatry ; 87(11): 1174-1182, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27516384

RESUMO

For patients with pharmacoresistant focal epilepsy in whom surgical resection of the epileptogenic focus fails or was not feasible in the first place, there were few therapeutic options. Increasingly, neurostimulation provides an alternative treatment strategy for these patients. Vagal nerve stimulation (VNS) is well established. Deep brain stimulation (DBS) and cortical responsive stimulation (CRS) are newer neurostimulation therapies with recently published long-term efficacy and safety data. In this literature review, we introduce these therapies to a non-specialist audience. Furthermore, we compare and contrast long-term (5-year) outcomes of newer neurostimulation techniques with the more established VNS. A search to identify all studies reporting long-term efficacy (>5 years) of VNS, CRS and DBS in patients with refractory focal/partial epilepsy was conducted using PubMed and Cochrane databases. The outcomes compared were responder rate, percentage seizure frequency reduction, seizure freedom, adverse events, neuropsychological outcome and quality of life. We identified 1 study for DBS, 1 study for CRS and 4 studies for VNS. All neurostimulation technologies showed long-term efficacy, with progressively better seizure control over time. Sustained improvement in quality of life measures was demonstrated in all modalities. Intracranial neurostimulation had a greater side effect profile compared with extracranial stimulation, though all forms of stimulation are safe. Methodological differences between the studies mean that direct comparisons are not straightforward. We have synthesised the findings of this review into a pragmatic decision tree, to guide the further management of the individual patient with pharmacoresistant focal-onset epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos/terapia , Epilepsias Parciais/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação do Nervo Vago/métodos , Córtex Cerebral/fisiopatologia , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/psicologia , Epilepsias Parciais/psicologia , Humanos , Assistência de Longa Duração , Testes Neuropsicológicos , Qualidade de Vida , Resultado do Tratamento
16.
Br J Neurosurg ; 30(6): 685-686, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27425005

RESUMO

The authors report the first case of successful implantation of a dorsal root ganglion stimulator at L1 and L2 for sustained improvement in chronic pelvic girdle pain.


Assuntos
Terapia por Estimulação Elétrica/métodos , Gânglios Espinais , Dor da Cintura Pélvica/terapia , Adulto , Dor Crônica , Eletrodos Implantados , Feminino , Humanos , Gravidez , Complicações na Gravidez/terapia , Resultado do Tratamento
17.
Clin Neurophysiol ; 127(7): 2573-80, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27291876

RESUMO

OBJECTIVE: To investigate the link between neuronal activity recorded from the sensory thalamus and periventricular gray/periaqueductal gray (PVAG) and pain relief by deep brain stimulation (DBS). METHODS: Local field potentials (LFPs) were recorded from the sensory thalamus and PVAG post-operatively from ten patients with neuropathic pain. The LFPs were quantified using spectral and time-frequency analysis, the relationship between the LFPs and pain relief was quantified with nonlinear correlation analysis. RESULTS: The theta oscillations of both sensory thalamus and PVAG correlated inversely with pain relief. The high beta oscillations in the sensory thalamus and the alpha oscillations in the PVAG correlated positively with pain relief. Moreover, the ratio of high-power duration to low-power duration of theta band activity in the sensory thalamus and PVAG correlated inversely with pain relief. The duration ratio at the high beta band in the sensory thalamus correlated positively with pain relief. CONCLUSIONS: Our results reveal distinct neuronal oscillations at the theta, alpha, and beta frequencies correlating with pain relief by DBS. SIGNIFICANCE: The study provides quantitative measures for predicting the outcomes of neuropathic pain relief by DBS as well as potential biomarkers for developing adaptive stimulation strategies.


Assuntos
Estimulação Encefálica Profunda , Potenciais Evocados , Neuralgia/terapia , Adulto , Ondas Encefálicas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuralgia/fisiopatologia , Tálamo/fisiologia
18.
J Neurosci Methods ; 264: 25-32, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26928256

RESUMO

BACKGROUND: Multiple oscillations emerging from the same neuronal substrate serve to construct a local oscillatory network. The network usually exhibits complex behaviors of rhythmic, balancing and coupling between the oscillations, and the quantification of these behaviors would provide valuable insight into organization of the local network related to brain states. NEW METHOD: An integrated approach to quantify rhythmic, balancing and coupling neural behaviors based upon power spectral analysis, power ratio analysis and cross-frequency power coupling analysis was presented. Deep brain local field potentials (LFPs) were recorded from the thalamus of patients with neuropathic pain and dystonic tremor. t-Test was applied to assess the difference between the two patient groups. RESULTS: The rhythmic behavior measured by power spectral analysis showed significant power spectrum difference in the high beta band between the two patient groups. The balancing behavior measured by power ratio analysis showed significant power ratio differences at high beta band to 8-20 Hz, and 30-40 Hz to high beta band between the patient groups. The coupling behavior measured by cross-frequency power coupling analysis showed power coupling differences at (theta band, high beta band) and (45-55 Hz, 70-80 Hz) between the patient groups. COMPARISON WITH EXISTING METHOD: The study provides a strategy for studying the brain states in a multi-dimensional behavior space and a framework to screen quantitative characteristics for biomarkers related to diseases or nuclei. CONCLUSIONS: The work provides a comprehensive approach for understanding the complex behaviors of deep brain LFPs and identifying quantitative biomarkers for brain states related to diseases or nuclei.


Assuntos
Ondas Encefálicas/fisiologia , Estimulação Encefálica Profunda/métodos , Distonia/fisiopatologia , Rede Nervosa/fisiologia , Neuralgia/fisiopatologia , Tálamo/fisiologia , Tremor/fisiopatologia , Adulto , Humanos , Pessoa de Meia-Idade
19.
World Neurosurg ; 86: 361-70.e1-3, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26344354

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the anterior cingulate cortex (ACC) is a new treatment for alleviating intractable neuropathic pain. However, it fails to help some patients. The large size of the ACC and the intersubject variability make it difficult to determine the optimal site to position DBS electrodes. The aim of this work was therefore to compare the ACC connectivity of patients with successful versus unsuccessful DBS outcomes to help guide future electrode placement. METHODS: Diffusion magnetic resonance imaging (dMRI) and probabilistic tractography were performed preoperatively in 8 chronic pain patients (age 53.4 ± 6.1 years, 2 females) with ACC DBS, of whom 6 had successful (SO) and 2 unsuccessful outcomes (UOs) during a period of trialing. RESULTS: The number of patients was too small to demonstrate any statistically significant differences. Nevertheless, we observed differences between patients with successful and unsuccessful outcomes in the fiber tract projections emanating from the volume of activated tissue around the electrodes. A strong connectivity to the precuneus area seems to predict unsuccessful outcomes in our patients (UO: 160n/SO: 27n), with (n), the number of streamlines per nonzero voxel. On the other hand, connectivity to the thalamus and brainstem through the medial forebrain bundle (MFB) was only observed in SO patients. CONCLUSIONS: These findings could help improve presurgical planning by optimizing electrode placement, to selectively target the tracts that help to relieve patients' pain and to avoid those leading to unwanted effects.


Assuntos
Dor Crônica/cirurgia , Estimulação Encefálica Profunda/métodos , Imagem de Tensor de Difusão/métodos , Giro do Cíngulo/anatomia & histologia , Giro do Cíngulo/cirurgia , Procedimentos Neurocirúrgicos/métodos , Eletrodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Feixe Prosencefálico Mediano/anatomia & histologia , Feixe Prosencefálico Mediano/cirurgia , Pessoa de Meia-Idade , Medição da Dor , Tálamo/anatomia & histologia , Tálamo/cirurgia , Resultado do Tratamento
20.
Exp Neurol ; 277: 19-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26687971

RESUMO

Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of 'paradoxical kinesis' in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus - a key component of the reticular activating system - provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an 'energizing' influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda/métodos , Potenciais Evocados/fisiologia , Atividade Motora/fisiologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Estimulação Acústica , Adulto , Idoso , Antiparkinsonianos/uso terapêutico , Sinais (Psicologia) , Eletromiografia , Potenciais Evocados/efeitos dos fármacos , Feminino , Força da Mão/fisiologia , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Doença de Parkinson/fisiopatologia , Estimulação Luminosa , Psicoacústica , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA