Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(12): 8075-8086, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37005061

RESUMO

Despite growing evidence implicating thalamic functional connectivity atypicalities in autism spectrum disorder (ASD), it remains unclear how such alterations emerge early in human development. Because the thalamus plays a critical role in sensory processing and neocortical organization early in life, its connectivity with other cortical regions could be key for studying the early onset of core ASD symptoms. Here, we investigated emerging thalamocortical functional connectivity in infants at high (HL) and typical (TL) familial likelihood for ASD in early and late infancy. We report significant thalamo-limbic hyperconnectivity in 1.5-month-old HL infants, and thalamo-cortical hypoconnectivity in prefrontal and motor regions in 9-month-old HL infants. Importantly, early sensory over-responsivity (SOR) symptoms in HL infants predicted a direct trade-off in thalamic connectivity whereby stronger thalamic connectivity with primary sensory regions and basal ganglia was inversely related to connectivity with higher order cortices. This trade-off suggests that ASD may be characterized by early differences in thalamic gating. The patterns reported here could directly underlie atypical sensory processing and attention to social vs. nonsocial stimuli observed in ASD. These findings lend support to a theoretical framework of ASD whereby early disruptions in sensorimotor processing and attentional biases early in life may cascade into core ASD symptomatology.


Assuntos
Transtorno do Espectro Autista , Humanos , Lactente , Imageamento por Ressonância Magnética , Tálamo , Gânglios da Base , Probabilidade
2.
Transl Psychiatry ; 11(1): 39, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436538

RESUMO

Sensory over-responsivity (SOR), extreme sensitivity to or avoidance of sensory stimuli (e.g., scratchy fabrics, loud sounds), is a highly prevalent and impairing feature of neurodevelopmental disorders such as autism spectrum disorders (ASD), anxiety, and ADHD. Previous studies have found overactive brain responses and reduced modulation of thalamocortical connectivity in response to mildly aversive sensory stimulation in ASD. These findings suggest altered thalamic sensory gating which could be associated with an excitatory/inhibitory neurochemical imbalance, but such thalamic neurochemistry has never been examined in relation to SOR. Here we utilized magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to examine the relationship between thalamic and somatosensory cortex inhibitory (gamma-aminobutyric acid, GABA) and excitatory (glutamate) neurochemicals with the intrinsic functional connectivity of those regions in 35 ASD and 35 typically developing pediatric subjects. Although there were no diagnostic group differences in neurochemical concentrations in either region, within the ASD group, SOR severity correlated negatively with thalamic GABA (r = -0.48, p < 0.05) and positively with somatosensory glutamate (r = 0.68, p < 0.01). Further, in the ASD group, thalamic GABA concentration predicted altered connectivity with regions previously implicated in SOR. These variations in GABA and associated network connectivity in the ASD group highlight the potential role of GABA as a mechanism underlying individual differences in SOR, a major source of phenotypic heterogeneity in ASD. In ASD, abnormalities of the thalamic neurochemical balance could interfere with the thalamic role in integrating, relaying, and inhibiting attention to sensory information. These results have implications for future research and GABA-modulating pharmacologic interventions.


Assuntos
Transtorno do Espectro Autista , Imageamento por Ressonância Magnética , Encéfalo , Criança , Humanos , Espectroscopia de Ressonância Magnética , Tálamo/diagnóstico por imagem
3.
Am J Psychiatry ; 176(12): 1010-1020, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31230465

RESUMO

OBJECTIVE: Sensory overresponsivity (SOR), an atypical negative reaction to sensory stimuli, is highly prevalent in autism spectrum disorder (ASD). Previous work has related SOR to increased brain response in sensory-limbic regions. This study investigated where these atypical responses fall in three fundamental stages of sensory processing: arousal (i.e., initial response), habituation (i.e., change in response over time), and generalization of response to novel stimuli. Different areas of atypical response would require distinct intervention approaches. METHODS: Functional MRI was used to examine these patterns of neural habituation to two sets of similar mildly aversive auditory and tactile stimuli in 42 high-functioning children and adolescents with ASD (21 with high levels of SOR and 21 with low levels of SOR) and 27 age-matched typically developing youths (ages 8-17). The relationship between SOR and change in amygdala-prefrontal functional connectivity across the sensory stimulation was also examined. RESULTS: Across repeated sensory stimulation, high-SOR participants with ASD showed reduced ability to maintain habituation in the amygdala and relevant sensory cortices and to maintain inhibition of irrelevant sensory cortices. These results indicate that sensory habituation is a dynamic, time-varying process dependent on sustained regulation across time, which is a particular deficit in high-SOR participants with ASD. However, low-SOR participants with ASD also showed distinct, nontypical neural response patterns, including reduced responsiveness to novel but similar stimuli and increases in prefrontal-amygdala regulation across the sensory exposure. CONCLUSIONS: The results suggest that all children with autism have atypical brain responses to sensory stimuli, but whether they express atypical behavioral responses depends on top-down regulatory mechanisms. Results are discussed in terms of targeted intervention approaches.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Sensibilização do Sistema Nervoso Central/fisiologia , Generalização Psicológica/fisiologia , Habituação Psicofisiológica/fisiologia , Estimulação Acústica , Adolescente , Tonsila do Cerebelo/fisiopatologia , Nível de Alerta , Estudos de Casos e Controles , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/fisiopatologia , Tato
4.
Autism Res ; 10(5): 801-809, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27896947

RESUMO

Recent evidence for abnormal thalamic connectivity in autism spectrum disorders (ASD) and sensory processing disorders suggests the thalamus may play a role in sensory over-responsivity (SOR), an extreme negative response to sensory stimuli, which is common in ASD. However, there is yet little understanding of changes in thalamic connectivity during exposure to aversive sensory inputs in individuals with ASD. In particular, the pulvinar nucleus of the thalamus is implicated in atypical sensory processing given its role in selective attention, regulation, and sensory integration. This study aimed to examine the role of pulvinar connectivity in ASD during mildly aversive sensory input. Functional magnetic resonance imaging was used to examine connectivity with the pulvinar during exposure to mildly aversive auditory and tactile stimuli in 38 youth (age 9-17; 19 ASD, 19 IQ-matched typically developing (TD)). Parents rated children's SOR severity on two standard scales. Compared to TD, ASD participants displayed aberrant modulation of connectivity between pulvinar and cortex (including sensory-motor and prefrontal regions) during sensory stimulation. In ASD participants, pulvinar-amygdala connectivity was correlated with severity of SOR symptoms. Deficits in modulation of thalamocortical connectivity in youth with ASD may reflect reduced thalamo-cortical inhibition in response to sensory stimulation, which could lead to difficulty filtering out and/or integrating sensory information. An increase in amygdala connectivity with the pulvinar might be partially responsible for deficits in selective attention as the amygdala signals the brain to attend to distracting sensory stimuli. Autism Res 2017, 10: 801-809. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma , Rede Nervosa/fisiopatologia , Transtornos de Sensação/fisiopatologia , Tálamo/fisiopatologia , Adolescente , Tonsila do Cerebelo/fisiopatologia , Atenção/fisiologia , Percepção Auditiva/fisiologia , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Inibição Neural/fisiologia , Pulvinar/fisiopatologia , Valores de Referência , Filtro Sensorial/fisiologia , Percepção do Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA