Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 13(5): e0197380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29746579

RESUMO

Treatment of prosthetic joint infections often involves multiple surgeries and prolonged antibiotic administration, resulting in a significant burden to patients and the healthcare system. We are exploring a non-invasive method to eradicate biofilm on metal implants utilizing high-frequency alternating magnetic fields (AMF) which can achieve surface induction heating. Although proof-of-concept studies demonstrate the ability of AMF to eradicate biofilm in vitro, there is a legitimate safety concern related to the potential for thermal damage to surrounding tissues when considering heating implanted metal objects. The goal of this study was to explore the feasibility of detecting acoustic emissions associated with boiling at the interface between a metal implant and surrounding soft tissue as a wireless safety sensing mechanism. Acoustic emissions generated during in vitro and in vivo AMF exposures were captured with a hydrophone, and the relationship with surface temperature analyzed. The effect of AMF exposure power, surrounding media composition, implant location within the AMF transmitter, and implant geometry on acoustic detection during AMF therapy was also evaluated. Acoustic emissions were reliably identified in both tissue-mimicking phantom and mouse studies, and their onset coincided with the implant temperature reaching the boiling threshold. The viscosity of the surrounding medium did not impact the production of acoustic emissions; however, emissions were not present when the medium was oil due to the higher boiling point. Results of simulations and in vivo studies suggest that short-duration, high-power AMF exposures combined with acoustic sensing can be used to minimize the amount of thermal damage in surrounding tissues. These studies support the hypothesis that detection of boiling associated acoustic emissions at a metal/tissue interface could serve as a real-time, wireless safety indicator during AMF treatment of biofilm on metallic implants.


Assuntos
Biofilmes , Hipertermia Induzida/métodos , Campos Magnéticos , Metais , Próteses e Implantes , Infecções Relacionadas à Prótese/terapia , Acústica , Animais , Simulação por Computador , Feminino , Análise de Elementos Finitos , Temperatura Alta , Humanos , Joelho , Camundongos , Modelos Estatísticos , Necrose , Segurança do Paciente , Imagens de Fantasmas , Propriedades de Superfície , Tecnologia sem Fio
2.
Artigo em Inglês | MEDLINE | ID: mdl-29588357

RESUMO

We report our clinical experience treating a 2-month-old infant with congenital diaphragmatic hernia who experienced prolonged bacteremia with Burkholderia cepacia complex (Bcc) despite conventional antibiotic therapy and appropriate source control measures. The infection resolved after initiation of ceftazidime-avibactam. Whole-genome sequencing revealed that the isolate most closely resembled B. contaminans and identified the mechanism of resistance that likely contributed to clinical cure with this agent. Ceftazidime-avibactam should be considered salvage therapy for Bcc infections if other treatment options have been exhausted.


Assuntos
Antibacterianos/uso terapêutico , Compostos Azabicíclicos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Complexo Burkholderia cepacia/efeitos dos fármacos , Complexo Burkholderia cepacia/patogenicidade , Ceftazidima/uso terapêutico , Combinação de Medicamentos , Feminino , Humanos , Lactente , Testes de Sensibilidade Microbiana
3.
Int J Hyperthermia ; 34(2): 189-200, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29498309

RESUMO

Implants are commonly used as a replacement for damaged tissue. Many implants, such as pacemakers, chronic electrode implants, bone screws, and prosthetic joints, are made of or contain metal. Infections are one of the difficult to treat complications associated with metal implants due to the formation of biofilm, a thick aggregate of extracellular polymeric substances (EPS) produced by the bacteria. In this study, we treated a metal prosthesis infection model using a combination of ciprofloxacin-loaded temperature-sensitive liposomes (TSL) and alternating magnetic fields (AMF). AMF heating is used to disrupt the biofilm and release the ciprofloxacin-loaded TSL. The three main objectives of this study were to (1) investigate low- and high-temperature-sensitive liposomes (LTSLs and HTSLs) containing the antimicrobial agent ciprofloxacin for temperature-mediated antibiotic release, (2) characterise in vitro ciprofloxacin release and stability and (3) study the efficacy of combining liposomal ciprofloxacin with AMF against Pseudomonas aeruginosa biofilms grown on metal washers. The release of ciprofloxacin from LTSL and HTSL was assessed in physiological buffers. Results demonstrated a lower transition temperature for both LTSL and HTSL formulations when incubated in serum as compared with PBS, with a more pronounced impact on the HTSLs. Upon combining AMF with temperature-sensitive liposomal ciprofloxacin, a 3 log reduction in CFU of Pseudomonas aeruginosa in biofilm was observed. Our initial studies suggest that AMF exposure on metal implants can trigger release of antibiotic from temperature sensitive liposomes for a potent bactericidal effect on biofilm.


Assuntos
Antibacterianos/uso terapêutico , Ciprofloxacina/uso terapêutico , Lipossomos/metabolismo , Antibacterianos/farmacologia , Biofilmes , Ciprofloxacina/farmacologia , Humanos , Campos Magnéticos , Microscopia Eletrônica de Varredura
4.
Sci Rep ; 7(1): 7520, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790407

RESUMO

Treatment of prosthetic joint infection (PJI) usually requires surgical replacement of the infected joint and weeks of antibiotic therapy, due to the formation of biofilm. We introduce a non-invasive method for thermal destruction of biofilm on metallic implants using high-frequency (>100 kHz) alternating magnetic fields (AMF). In vitro investigations demonstrate a >5-log reduction in bacterial counts after 5 minutes of AMF exposure. Confocal and scanning electron microscopy confirm removal of biofilm matrix components within 1 minute of AMF exposure, and combination studies of antibiotics and AMF demonstrate a 5-log increase in the sensitivity of Pseudomonas aeruginosa to ciprofloxacin. Finite element analysis (FEA) simulations demonstrate that intermittent AMF exposures can achieve uniform surface heating of a prosthetic knee joint. In vivo studies confirm thermal damage is confined to a localized region (<2 mm) around the implant, and safety can be achieved using acoustic monitoring for the presence of surface boiling. These initial studies support the hypothesis that AMF exposures can eradicate biofilm on metal implants, and may enhance the effectiveness of conventional antibiotics.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Campos Magnéticos , Infecções Relacionadas à Prótese/terapia , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Biofilmes/crescimento & desenvolvimento , Bovinos , Simulação por Computador , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Feminino , Análise de Elementos Finitos , Camundongos , Testes de Sensibilidade Microbiana , Próteses e Implantes/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/patologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/crescimento & desenvolvimento
5.
J Infect Dis ; 201(12): 1822-30, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20438352

RESUMO

BACKGROUND: Members of the Burkholderia cepacia complex (Bcc) cause considerable morbidity and mortality in patients with chronic granulomatous disease and cystic fibrosis. Many Bcc strains are antibiotic resistant, which requires the exploration of novel antimicrobial approaches, including antisense technologies such as phosphorodiamidate morpholino oligomers (PMOs). METHODS: Peptide-conjugated PMOs (PPMOs) were developed to target acpP, which encodes an acyl carrier protein (AcpP) that is thought to be essential for growth. Their antimicrobial activities were tested against different strains of Bcc in vitro and in infection models. RESULTS: PPMOs targeting acpP were bactericidal against clinical isolates of Bcc (>4 log reduction), whereas a PPMO with a scrambled base sequence (scrambled PPMO) had no effect on growth. Human neutrophils were infected with Burkholderia multivorans and treated with AcpP PPMO. AcpP PPMO augmented killing, compared with neutrophils alone and compared with neutrophils alone plus scrambled PPMO. Mice with chronic granulomatous disease that were infected with B. multivorans were treated with AcpP PPMO, scrambled PPMO, or water at 0, 3, and 6 h after infection. Compared with water-treated control mice, the AcpP PPMO-treated mice showed an approximately 80% reduction in the risk of dying by day 30 of the experiment and relatively little pathology. CONCLUSION: AcpP PPMO is active against Bcc infections in vitro and in vivo.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Burkholderia/tratamento farmacológico , Complexo Burkholderia cepacia/efeitos dos fármacos , Morfolinas/uso terapêutico , Oligodesoxirribonucleotídeos Antissenso/uso terapêutico , Proteína de Transporte de Acila/antagonistas & inibidores , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Infecções por Burkholderia/mortalidade , Infecções por Burkholderia/patologia , Sobrevivência Celular , Modelos Animais de Doenças , Doença Granulomatosa Crônica/complicações , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Morfolinas/farmacologia , Morfolinos , Neutrófilos/microbiologia , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA