Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(46): 22972-22976, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659019

RESUMO

Accelerated soil erosion has become a pervasive feature on landscapes around the world and is recognized to have substantial implications for land productivity, downstream water quality, and biogeochemical cycles. However, the scarcity of global syntheses that consider long-term processes has limited our understanding of the timing, the amplitude, and the extent of soil erosion over millennial time scales. As such, we lack the ability to make predictions about the responses of soil erosion to long-term climate and land cover changes. Here, we reconstruct sedimentation rates for 632 lakes based on chronologies constrained by 3,980 calibrated 14C ages to assess the relative changes in lake-watershed erosion rates over the last 12,000 y. Estimated soil erosion dynamics were then complemented with land cover reconstructions inferred from 43,669 pollen samples and with climate time series from the Max Planck Institute Earth System Model. Our results show that a significant portion of the Earth surface shifted to human-driven soil erosion rate already 4,000 y ago. In particular, inferred soil erosion rates increased in 35% of the watersheds, and most of these sites showed a decrease in the proportion of arboreal pollen, which would be expected with land clearance. Further analysis revealed that land cover change was the main driver of inferred soil erosion in 70% of all studied watersheds. This study suggests that soil erosion has been altering terrestrial and aquatic ecosystems for millennia, leading to carbon (C) losses that could have ultimately induced feedbacks on the climate system.


Assuntos
Ecologia/história , Sedimentos Geológicos/química , Atividades Humanas/história , Isótopos de Carbono/análise , Clima , Ecossistema , História Antiga , Humanos , Lagos/química , Pólen/química , Solo/química
2.
Ecol Lett ; 18(4): 375-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25728551

RESUMO

Increases in atmospheric temperature and nutrients from land are thought to be promoting the expansion of harmful cyanobacteria in lakes worldwide, yet to date there has been no quantitative synthesis of long-term trends. To test whether cyanobacteria have increased in abundance over the past ~ 200 years and evaluate the relative influence of potential causal mechanisms, we synthesised 108 highly resolved sedimentary time series and 18 decadal-scale monitoring records from north temperate-subarctic lakes. We demonstrate that: (1) cyanobacteria have increased significantly since c. 1800 ce, (2) they have increased disproportionately relative to other phytoplankton, and (3) cyanobacteria increased more rapidly post c. 1945 ce. Variation among lakes in the rates of increase was explained best by nutrient concentration (phosphorus and nitrogen), and temperature was of secondary importance. Although cyanobacterial biomass has declined in some managed lakes with reduced nutrient influx, the larger spatio-temporal scale of sedimentary records show continued increases in cyanobacteria throughout the north temperate-subarctic regions.


Assuntos
Mudança Climática , Cianobactérias/crescimento & desenvolvimento , Lagos/microbiologia , Temperatura , Cianobactérias/classificação , Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Lagos/química , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Fatores de Tempo , Xantofilas/análise
3.
PLoS One ; 6(1): e15913, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21264341

RESUMO

BACKGROUND: A hallmark of the latter half of the 20(th) century is the widespread, rapid intensification of a variety of anthropogenically-driven environmental changes--a "Great Acceleration." While there is evidence of a Great Acceleration in a variety of factors known to be linked to water quality degradation, such as conversion of land to agriculture and intensification of fertilizer use, it is not known whether there has been a similar acceleration of freshwater eutrophication. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative reconstructions of diatom-inferred total phosphorus (DI-TP) as a proxy for lake trophic state, we synthesized results from 67 paleolimnological studies from across Europe and North America to evaluate whether most lakes showed a pattern of eutrophication with time and whether this trend was accelerated after 1945 CE, indicative of a Great Acceleration. We found that European lakes have experienced widespread increases in DI-TP over the 20(th) century and that 33% of these lakes show patterns consistent with a post-1945 CE Great Acceleration. In North America, the proportion of lakes that increased in DI-TP over time is much lower and only 9% exhibited a Great Acceleration of eutrophication. CONCLUSIONS/SIGNIFICANCE: The longer and more widespread history of anthropogenic influence in Europe, the leading cause for the relatively pervasive freshwater eutrophication, provides an important cautionary tale; our current path of intensive agriculture around the world may lead to an acceleration of eutrophication in downstream lakes that could take centuries from which to recover.


Assuntos
Agricultura , Monitoramento Ambiental , Eutrofização , Meio Ambiente , Europa (Continente) , Água Doce , América do Norte , Fósforo/análise , Poluição da Água
4.
Ecology ; 89(3): 729-43, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18459336

RESUMO

Recent observations and model simulations have highlighted the sensitivity of the forest-tundra ecotone to climatic forcing. In contrast, paleoecological studies have not provided evidence of tree-line fluctuations in response to Holocene climatic changes in Alaska, suggesting that the forest-tundra boundary in certain areas may be relatively stable at multicentennial to millennial time scales. We conducted a multiproxy study of sediment cores from an Alaskan lake near the altitudinal limits of key boreal-forest species. Paleoecological data were compared with independent climatic reconstructions to assess ecosystem responses of the forest tundra boundary to Little Ice Age (LIA) climatic fluctuations. Pollen, diatom, charcoal, macrofossil, and magnetic analyses provide the first continuous record of vegetation fire-climate interactions at decadal to centennial time scales during the past 700 years from southern Alaska. Boreal-forest diebacks characterized by declines of Picea mariana, P. glauca, and tree Betula occurred during the LIA (AD 1500-1800), whereas shrubs (Alnus viridis, Betula glandulosa/nana) and herbaceous taxa (Epilobium, Aconitum) expanded. Marked increases in charcoal abundance and changes in magnetic properties suggest increases in fire importance and soil erosion during the same period. In addition, the conspicuous reduction or disappearance of certain aquatic (e.g., Isoetes, Nuphar, Pediastrum) and wetland (Sphagnum) plants and major shifts in diatom assemblages suggest pronounced lake-level fluctuations and rapid ecosystem reorganization in response to LIA climatic deterioration. Our results imply that temperature shifts of 1-2 degrees C, when accompanied by major changes in moisture balance, can greatly alter high-altitudinal terrestrial, wetland, and aquatic ecosystems, including conversion between boreal-forest tree line and tundra. The climatic and ecosystem variations in our study area appear to be coherent with changes in solar irradiance, suggesting that changes in solar activity contributed to the environmental instability of the past 700 years.


Assuntos
Clima , Ecossistema , Fósseis , Camada de Gelo , Fenômenos Fisiológicos Vegetais , Alaska , Diatomáceas , Incêndios , Agricultura Florestal , Sedimentos Geológicos , Efeito Estufa , Pólen , Fatores de Tempo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA