Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 57(6): 2793-800, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23571544

RESUMO

Fluconazole is frequently the only antifungal agent that is available for induction therapy for cryptococcal meningitis. There is relatively little understanding of the pharmacokinetics and pharmacodynamics (PK-PD) of fluconazole in this setting. PK-PD relationships were estimated with 4 clinical isolates of Cryptococcus neoformans. MICs were determined using Clinical and Laboratory Standards Institute (CLSI) methodology. A nonimmunosuppressed murine model of cryptococcal meningitis was used. Mice received two different doses of fluconazole (125 mg/kg of body weight/day and 250 mg/kg of body weight/day) orally for 9 days; a control group of mice was not given fluconazole. Fluconazole concentrations in plasma and in the cerebrum were determined using high-performance liquid chromatography (HPLC). The cryptococcal density in the brain was estimated using quantitative cultures. A mathematical model was fitted to the PK-PD data. The experimental results were extrapolated to humans (bridging study). The PK were linear. A dose-dependent decline in fungal burden was observed, with near-maximal activity evident with dosages of 250 mg/kg/day. The MIC was important for understanding the exposure-response relationships. The mean AUC/MIC ratio associated with stasis was 389. The results of the bridging study suggested that only 66.7% of patients receiving 1,200 mg/kg would achieve or exceed an AUC/MIC ratio of 389. The potential breakpoints for fluconazole against Cryptococcus neoformans follow: susceptible, ≤ 2 mg/liter; resistant, >2 mg/liter. Fluconazole may be an inferior agent for induction therapy because many patients cannot achieve the pharmacodynamic target. Clinical breakpoints are likely to be significantly lower than epidemiological cutoff values. The MIC may guide the appropriate use of fluconazole. If fluconazole is the only option for induction therapy, then the highest possible dose should be used.


Assuntos
Antifúngicos/farmacocinética , Antifúngicos/uso terapêutico , Cryptococcus neoformans/efeitos dos fármacos , Fluconazol/farmacocinética , Fluconazol/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Meningoencefalite/tratamento farmacológico , Animais , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Área Sob a Curva , Modelos Animais de Doenças , Fluconazol/administração & dosagem , Fluconazol/farmacologia , Humanos , Masculino , Meningite Criptocócica/microbiologia , Meningoencefalite/microbiologia , Camundongos , Testes de Sensibilidade Microbiana/normas , Modelos Biológicos , Resultado do Tratamento
2.
Antimicrob Agents Chemother ; 56(10): 5180-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22825124

RESUMO

Voriconazole is a first-line agent for the treatment of invasive pulmonary aspergillosis. Isolates with elevated voriconazole MICs are increasingly being seen, and the optimal treatment regimen is not defined. We investigated whether the combination of voriconazole with anidulafungin may be beneficial for the treatment of A. fumigatus strains with elevated voriconazole MICs. We used an in vitro model of the human alveolus to define the exposure-response relationships for a wild-type strain (voriconazole MIC, 0.5 mg/liter) and strains with defined molecular mechanisms of triazole resistance (MICs, 4 to 16 mg/liter). All strains had anidulafungin minimum effective concentrations (MECs) of 0.0078 mg/liter. Exposure-response relationships were estimated using galactomannan as a biomarker. Concentrations of voriconazole and anidulafungin were measured using high-performance liquid chromatography (HPLC). The interaction of voriconazole and anidulafungin was described using the Greco model. Fungal growth was progressively inhibited with higher drug exposures of voriconazole. Strains with elevated voriconazole MICs required proportionally greater voriconazole exposures to achieve a comparable antifungal effect. Galactomannan concentrations were only marginally reduced by anidulafungin monotherapy. An additive effect between voriconazole and anidulafungin was apparent. In conclusion, the addition of anidulafungin does not markedly alter the exposure-response relationship of voriconazole. A rise in serum galactomannan during combination therapy with voriconazole and anidulafungin should be interpreted as treatment failure and not attributed to a paradoxical reaction related to echinocandin treatment.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Equinocandinas/farmacologia , Aspergilose Pulmonar Invasiva/microbiologia , Pirimidinas/farmacologia , Triazóis/farmacologia , Anidulafungina , Antifúngicos/farmacocinética , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Interações Medicamentosas , Equinocandinas/farmacocinética , Humanos , Testes de Sensibilidade Microbiana , Modelos Teóricos , Alvéolos Pulmonares , Pirimidinas/farmacocinética , Triazóis/farmacocinética , Voriconazol
3.
Antimicrob Agents Chemother ; 56(8): 4146-53, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22615280

RESUMO

Itraconazole is used for the prevention and treatment of infections caused by Aspergillus fumigatus. An understanding of the pharmacodynamics of itraconazole against wild-type and triazole-resistant strains provides a basis for innovative therapeutic strategies for treatment of infections. An in vitro model of the human alveolus was used to define the pharmacodynamics of itraconazole. Galactomannan was used as a biomarker. The effect of systemic and airway administration of itraconazole was assessed, as was a combination of itraconazole administered to the airway and systemically administered 5FC. Systemically administered itraconazole against the wild type induced a concentration-dependent decline in galactomannan in the alveolar and endothelial compartments. No exposure-response relationships were apparent for the L98H, M220T, or G138C mutant. The administration of itraconazole to the airway resulted in comparable exposure-response relationships to those observed with systemic therapy. This was achieved without detectable concentrations of drug within the endothelial compartment. The airway administration of itraconazole resulted in a definite but submaximal effect in the endothelial compartment against the L98H mutant. The administration of 5FC resulted in a concentration-dependent decline in galactomannan in both the alveolar and endothelial compartments. The combination of airway administration of itraconazole and systemically administered 5FC was additive. Systemic administration of itraconazole is ineffective against Cyp51 mutants. The airway administration of itraconazole is effective for the treatment of wild-type strains and appears to have some activity against the L98H mutants. Combination with other agents, such as 5FC, may enable the attainment of near-maximal antifungal activity.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Itraconazol/farmacologia , Pneumopatias Fúngicas/tratamento farmacológico , Alvéolos Pulmonares/microbiologia , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Aspergilose/microbiologia , Aspergilose/prevenção & controle , Células Cultivadas , Vias de Administração de Medicamentos , Farmacorresistência Fúngica , Flucitosina/administração & dosagem , Flucitosina/farmacologia , Galactose/análogos & derivados , Humanos , Itraconazol/administração & dosagem , Itraconazol/farmacocinética , Pneumopatias Fúngicas/microbiologia , Mananas/análise , Testes de Sensibilidade Microbiana , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA