Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474420

RESUMO

NAD+ boosting via nicotinamide riboside (NR) confers anti-inflammatory effects. However, its underlying mechanisms and therapeutic potential remain incompletely defined. Here, we showed that NR increased the expression of CC-chemokine receptor 7 (CCR7) in human M1 macrophages by flow cytometric analysis of cell surface receptors. Consequently, chemokine ligand 19 (CCL19, ligand for CCR7)-induced macrophage migration was enhanced following NR administration. Metabolomics analysis revealed that prostaglandin E2 (PGE2) was increased by NR in human monocytes and in human serum following in vivo NR supplementation. Furthermore, NR-mediated upregulation of macrophage migration through CCL19/CCR7 was dependent on PGE2 synthesis. We also demonstrated that NR upregulated PGE2 synthesis through SIRT3-dependent post-transcriptional regulation of cyclooxygenase 2 (COX-2). The NR/SIRT3/migration axis was further validated using the scratch-test model where NR and SIRT3 promoted more robust migration across a uniformly disrupted macrophage monolayer. Thus, NR-mediated metabolic regulation of macrophage migration and wound healing may have therapeutic potential for the topical management of chronic wound healing.


Assuntos
Dinoprostona , Niacinamida/análogos & derivados , Compostos de Piridínio , Sirtuína 3 , Humanos , Dinoprostona/metabolismo , Ligantes , Receptores CCR7/metabolismo , Macrófagos/metabolismo
2.
JCI Insight ; 4(12)2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31145699

RESUMO

BACKGROUNDDietary changes have led to the growing prevalence of type 2 diabetes and nonalcoholic fatty liver disease. A hallmark of both disorders is hepatic lipid accumulation, derived in part from increased de novo lipogenesis. Despite the popularity of high-protein diets for weight loss, the effect of dietary protein on de novo lipogenesis is poorly studied. We aimed to characterize the effect of dietary protein on de novo lipid synthesis.METHODSWe use a 3-way crossover interventional study in healthy males to determine the effect of high-protein feeding on de novo lipogenesis, combined with in vitro models to determine the lipogenic effects of specific amino acids. The primary outcome was a change in de novo lipogenesis-associated triglycerides in response to protein feeding.RESULTSWe demonstrate that high-protein feeding, rich in glutamate, increases de novo lipogenesis-associated triglycerides in plasma (1.5-fold compared with control; P < 0.0001) and liver-derived very low-density lipoprotein particles (1.8-fold; P < 0.0001) in samples from human subjects (n = 9 per group). In hepatocytes, we show that glutamate-derived carbon is incorporated into triglycerides via palmitate. In addition, supplementation with glutamate, glutamine, and leucine, but not lysine, increased triglyceride synthesis and decreased glucose uptake. Glutamate, glutamine, and leucine increased activation of protein kinase B, suggesting that induction of de novo lipogenesis occurs via the insulin signaling cascade.CONCLUSIONThese findings provide mechanistic insight into how select amino acids induce de novo lipogenesis and insulin resistance, suggesting that high-protein feeding to tackle diabetes and obesity requires greater consideration.FUNDINGThe research was supported by UK Medical Research Council grants MR/P011705/1, MC_UP_A090_1006 and MR/P01836X/1. JLG is supported by the Imperial Biomedical Research Centre, National Institute for Health Research (NIHR).


Assuntos
Dieta Rica em Proteínas/efeitos adversos , Comportamento Alimentar/fisiologia , Lipogênese , Fígado/metabolismo , Triglicerídeos/biossíntese , Administração Oral , Adulto , Aminoácidos/administração & dosagem , Aminoácidos/efeitos adversos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/efeitos adversos , Voluntários Saudáveis , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/citologia , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/etiologia , Obesidade/metabolismo , Triglicerídeos/sangue , Adulto Jovem
3.
Eur J Nutr ; 58(4): 1529-1543, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29616322

RESUMO

PURPOSE: There is much information on the bioavailability of (poly)phenolic compounds following acute intake of various foods. However, there are only limited data on the effects of repeated and combined exposure to specific (poly)phenol food sources and the inter-individual variability in their bioavailability. This study evaluated the combined urinary excretion of (poly)phenols from green tea and coffee following daily consumption by healthy subjects in free-living conditions. The inter-individual variability in the production of phenolic metabolites was also investigated. METHODS: Eleven participants consumed both tablets of green tea and green coffee bean extracts daily for 8 weeks and 24-h urine was collected on five different occasions. The urinary profile of phenolic metabolites and a set of multivariate statistical tests were used to investigate the putative existence of characteristic metabotypes in the production of flavan-3-ol microbial metabolites. RESULTS: (Poly)phenolic compounds in the green tea and green coffee bean extracts were absorbed and excreted after simultaneous consumption, with green tea resulting in more inter-individual variability in urinary excretion of phenolic metabolites. Three metabotypes in the production of flavan-3-ol microbial metabolites were tentatively defined, characterized by the excretion of different amounts of trihydroxyphenyl-γ-valerolactones, dihydroxyphenyl-γ-valerolactones, and hydroxyphenylpropionic acids. CONCLUSIONS: The selective production of microbiota-derived metabolites from flavan-3-ols and the putative existence of characteristic metabotypes in their production represent an important development in the study of the bioavailability of plant bioactives. These observations will contribute to better understand the health effects and individual differences associated with consumption of flavan-3-ols, arguably the main class of flavonoids in the human diet.


Assuntos
Café/metabolismo , Colo/metabolismo , Flavonoides/urina , Polifenóis/urina , Chá/metabolismo , Adolescente , Adulto , Disponibilidade Biológica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
J Proteome Res ; 16(9): 3168-3179, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587463

RESUMO

To understand the interaction between diet and health, biomarkers that accurately reflect consumption of foods of perceived health relevance are needed. The aim of this investigation was to use direct infusion-mass spectrometry (DI-MS) lipidomics to determine the effects of fish oil supplementation on lipid profiles of human adipose tissue. Adipose tissue samples from an n-3 polyunsaturated fatty acid (PUFA) supplementation study (n = 66) were analyzed to compare the pattern following supplementation equivalent to zero or four portions of oily fish per week. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were incorporated into highly unsaturated (≥5 double bonds) triglycerides (TGs), phosphocholines, and phosphoethanolamines as well as being detected directly as the nonesterified fatty acid forms. Multivariate statistics demonstrated that phospholipids were the most accurate and sensitive lipids for the assessing EPA and DHA incorporation into adipose tissue. Potential confounding factors (adiposity, age, and sex of the subject) were also considered in the analysis, and adiposity was also associated with an increase in highly unsaturated TGs as a result of incorporation of the n-6 PUFA arachidonic acid. DI-MS provides a high-throughput analysis of fatty acid status that can monitor oily fish consumption, suitable for use in cohort studies.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Óleos de Peixe/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Adulto , Animais , Peso Corporal , Estudos de Casos e Controles , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Óleos de Peixe/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fosfolipídeos/metabolismo , Análise de Componente Principal , Triglicerídeos/metabolismo
5.
Sci Rep ; 7: 44845, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332596

RESUMO

Recent findings have shown an inverse association between circulating C15:0/C17:0 fatty acids with disease risk, therefore, their origin needs to be determined to understanding their role in these pathologies. Through combinations of both animal and human intervention studies, we comprehensively investigated all possible contributions of these fatty acids from the gut-microbiota, the diet, and novel endogenous biosynthesis. Investigations included an intestinal germ-free study and a C15:0/C17:0 diet dose response study. Endogenous production was assessed through: a stearic acid infusion, phytol supplementation, and a Hacl1-/- mouse model. Two human dietary intervention studies were used to translate the results. Finally, a study comparing baseline C15:0/C17:0 with the prognosis of glucose intolerance. We found that circulating C15:0/C17:0 levels were not influenced by the gut-microbiota. The dose response study showed C15:0 had a linear response, however C17:0 was not directly correlated. The phytol supplementation only decreased C17:0. Stearic acid infusion only increased C17:0. Hacl1-/- only decreased C17:0. The glucose intolerance study showed only C17:0 correlated with prognosis. To summarise, circulating C15:0 and C17:0 are independently derived; C15:0 correlates directly with dietary intake, while C17:0 is substantially biosynthesized, therefore, they are not homologous in the aetiology of metabolic disease. Our findings emphasize the importance of the biosynthesis of C17:0 and recognizing its link with metabolic disease.


Assuntos
Açúcares da Dieta/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Intolerância à Glucose , Animais , Vias Biossintéticas , Dieta , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Açúcares da Dieta/administração & dosagem , Suplementos Nutricionais , Teste de Tolerância a Glucose , Humanos , Camundongos , Ratos
6.
Diabetes ; 66(3): 674-688, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28028076

RESUMO

Exercise is an effective intervention for the prevention and treatment of type 2 diabetes. Skeletal muscle combines multiple signals that contribute to the beneficial effects of exercise on cardiometabolic health. Inorganic nitrate increases exercise efficiency, tolerance, and performance. The transcriptional regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) coordinates the exercise-stimulated skeletal muscle fiber-type switch from glycolytic fast-twitch (type IIb) to oxidative slow-twitch (type I) and intermediate (type IIa) fibers, an effect reversed in insulin resistance and diabetes. We found that nitrate induces PGC1α expression and a switch toward type I and IIa fibers in rat muscle and myotubes in vitro. Nitrate induces the release of exercise/PGC1α-dependent myokine FNDC5/irisin and ß-aminoisobutyric acid from myotubes and muscle in rats and humans. Both exercise and nitrate stimulated PGC1α-mediated γ-aminobutyric acid (GABA) secretion from muscle. Circulating GABA concentrations were increased in exercising mice and nitrate-treated rats and humans; thus, GABA may function as an exercise/PGC1α-mediated myokine-like small molecule. Moreover, nitrate increased circulating growth hormone levels in humans and rodents. Nitrate induces physiological responses that mimic exercise training and may underlie the beneficial effects of this metabolite on exercise and cardiometabolic health.


Assuntos
Fibronectinas/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Nitratos/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/efeitos dos fármacos , Condicionamento Físico Animal , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Idoso , Ácidos Aminoisobutíricos , Animais , Beta vulgaris , Cromatografia Líquida , Método Duplo-Cego , Feminino , Fibronectinas/metabolismo , Sucos de Frutas e Vegetais , Cromatografia Gasosa-Espectrometria de Massas , Hormônio do Crescimento/metabolismo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Resistência à Insulina , Masculino , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Wistar , Transcriptoma , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
7.
PLoS Med ; 13(7): e1002094, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27434045

RESUMO

BACKGROUND: Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs) are related to type 2 diabetes (T2D) is debated. Objectively measured plasma PUFAs can help to clarify these associations. METHODS AND FINDINGS: Plasma phospholipid PUFAs were measured by gas chromatography among 12,132 incident T2D cases and 15,919 subcohort participants in the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct study across eight European countries. Country-specific hazard ratios (HRs) were estimated using Prentice-weighted Cox regression and pooled by random-effects meta-analysis. We also systematically reviewed published prospective studies on circulating PUFAs and T2D risk and pooled the quantitative evidence for comparison with results from EPIC-InterAct. In EPIC-InterAct, among long-chain n-3 PUFAs, α-linolenic acid (ALA) was inversely associated with T2D (HR per standard deviation [SD] 0.93; 95% CI 0.88-0.98), but eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were not significantly associated. Among n-6 PUFAs, linoleic acid (LA) (0.80; 95% CI 0.77-0.83) and eicosadienoic acid (EDA) (0.89; 95% CI 0.85-0.94) were inversely related, and arachidonic acid (AA) was not significantly associated, while significant positive associations were observed with γ-linolenic acid (GLA), dihomo-GLA, docosatetraenoic acid (DTA), and docosapentaenoic acid (n6-DPA), with HRs between 1.13 to 1.46 per SD. These findings from EPIC-InterAct were broadly similar to comparative findings from summary estimates from up to nine studies including between 71 to 2,499 T2D cases. Limitations included potential residual confounding and the inability to distinguish between dietary and metabolic influences on plasma phospholipid PUFAs. CONCLUSIONS: These large-scale findings suggest an important inverse association of circulating plant-origin n-3 PUFA (ALA) but no convincing association of marine-derived n3 PUFAs (EPA and DHA) with T2D. Moreover, they highlight that the most abundant n6-PUFA (LA) is inversely associated with T2D. The detection of associations with previously less well-investigated PUFAs points to the importance of considering individual fatty acids rather than focusing on fatty acid class.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-6/sangue , Ácidos Graxos Insaturados/sangue , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Ácidos Graxos Ômega-3/efeitos adversos , Ácidos Graxos Ômega-6/efeitos adversos , Ácidos Graxos Insaturados/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade
8.
BMC Biol ; 13: 110, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26694920

RESUMO

BACKGROUND: Insulin sensitivity in skeletal muscle is associated with metabolic flexibility, including a high capacity to increase fatty acid (FA) oxidation in response to increased lipid supply. Lipid overload, however, can result in incomplete FA oxidation and accumulation of potentially harmful intermediates where mitochondrial tricarboxylic acid cycle capacity cannot keep pace with rates of ß-oxidation. Enhancement of muscle FA oxidation in combination with mitochondrial biogenesis is therefore emerging as a strategy to treat metabolic disease. Dietary inorganic nitrate was recently shown to reverse aspects of the metabolic syndrome in rodents by as yet incompletely defined mechanisms. RESULTS: Herein, we report that nitrate enhances skeletal muscle FA oxidation in rodents in a dose-dependent manner. We show that nitrate induces FA oxidation through a soluble guanylate cyclase (sGC)/cGMP-mediated PPARß/δ- and PPARα-dependent mechanism. Enhanced PPARß/δ and PPARα expression and DNA binding induces expression of FA oxidation enzymes, increasing muscle carnitine and lowering tissue malonyl-CoA concentrations, thereby supporting intra-mitochondrial pathways of FA oxidation and enhancing mitochondrial respiration. At higher doses, nitrate induces mitochondrial biogenesis, further increasing FA oxidation and lowering long-chain FA concentrations. Meanwhile, nitrate did not affect mitochondrial FA oxidation in PPARα(-/-) mice. In C2C12 myotubes, nitrate increased expression of the PPARα targets Cpt1b, Acadl, Hadh and Ucp3, and enhanced oxidative phosphorylation rates with palmitoyl-carnitine; however, these changes in gene expression and respiration were prevented by inhibition of either sGC or protein kinase G. Elevation of cGMP, via the inhibition of phosphodiesterase 5 by sildenafil, also increased expression of Cpt1b, Acadl and Ucp3, as well as CPT1B protein levels, and further enhanced the effect of nitrate supplementation. CONCLUSIONS: Nitrate may therefore be effective in the treatment of metabolic disease by inducing FA oxidation in muscle.


Assuntos
GMP Cíclico/metabolismo , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ração Animal/análise , Animais , Dieta , Relação Dose-Resposta a Droga , Masculino , Biogênese de Organelas , Oxirredução , Ratos , Ratos Wistar
9.
FASEB J ; 29(3): 1102-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25422368

RESUMO

In mammals, hypoxia-triggered erythropoietin release increases red blood cell mass to meet tissue oxygen demands. Using male Wistar rats, we unmask a previously unrecognized regulatory pathway of erythropoiesis involving suppressor control by the NO metabolite and ubiquitous dietary component nitrate. We find that circulating hemoglobin levels are modulated by nitrate at concentrations achievable by dietary intervention under normoxic and hypoxic conditions; a moderate dose of nitrate administered via the drinking water (7 mg NaNO3/kg body weight/d) lowered hemoglobin concentration and hematocrit after 6 d compared with nonsupplemented/NaCl-supplemented controls. The underlying mechanism is suppression of hepatic erythropoietin expression associated with the downregulation of tissue hypoxia markers, suggesting increased pO2. At higher nitrate doses, however, a partial reversal of this effect occurred; this was accompanied by increased renal erythropoietin expression and stabilization of hypoxia-inducible factors, likely brought about by the relative anemia. Thus, hepatic and renal hypoxia-sensing pathways act in concert to modulate hemoglobin in response to nitrate, converging at an optimal minimal hemoglobin concentration appropriate to the environmental/physiologic situation. Suppression of hepatic erythropoietin expression by nitrate may thus act to decrease blood viscosity while matching oxygen supply to demand, whereas renal oxygen sensing could act as a brake, averting a potentially detrimental fall in hematocrit.


Assuntos
Suplementos Nutricionais , Eritropoese/efeitos dos fármacos , Eritropoetina/metabolismo , Hemoglobinas/metabolismo , Hipóxia/metabolismo , Nitratos/administração & dosagem , Oxigênio/metabolismo , Animais , Epoetina alfa , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Técnicas Imunoenzimáticas , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nitratos/farmacologia , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo
10.
J Physiol ; 592(21): 4715-31, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172947

RESUMO

Hypoxic exposure is associated with impaired cardiac energetics in humans and altered mitochondrial function, with suppressed complex I-supported respiration, in rat heart. This response might limit reactive oxygen species generation, but at the cost of impaired electron transport chain (ETC) activity. Dietary nitrate supplementation improves mitochondrial efficiency and can promote tissue oxygenation by enhancing blood flow. We therefore hypothesised that ETC dysfunction, impaired energetics and oxidative damage in the hearts of rats exposed to chronic hypoxia could be alleviated by sustained administration of a moderate dose of dietary nitrate. Male Wistar rats (n = 40) were given water supplemented with 0.7 mmol l(-1) NaCl (as control) or 0.7 mmol l(-1) NaNO3, elevating plasma nitrate levels by 80%, and were exposed to 13% O2 (hypoxia) or normoxia (n = 10 per group) for 14 days. Respiration rates, ETC protein levels, mitochondrial density, ATP content and protein carbonylation were measured in cardiac muscle. Complex I respiration rates and protein levels were 33% lower in hypoxic/NaCl rats compared with normoxic/NaCl controls. Protein carbonylation was 65% higher in hearts of hypoxic rats compared with controls, indicating increased oxidative stress, whilst ATP levels were 62% lower. Respiration rates, complex I protein and activity, protein carbonylation and ATP levels were all fully protected in the hearts of nitrate-supplemented hypoxic rats. Both in normoxia and hypoxia, dietary nitrate suppressed cardiac arginase expression and activity and markedly elevated cardiac l-arginine concentrations, unmasking a novel mechanism of action by which nitrate enhances tissue NO bioavailability. Dietary nitrate therefore alleviates metabolic abnormalities in the hypoxic heart, improving myocardial energetics.


Assuntos
Arginina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Nitratos/farmacologia , Animais , Arginase/genética , Arginase/metabolismo , Dieta , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/fisiologia , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Nitratos/administração & dosagem , Nitritos/química , Nitritos/metabolismo , Estresse Oxidativo , Oxigênio , Ratos , Ratos Wistar
11.
Mol Nutr Food Res ; 58(3): 601-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24190860

RESUMO

SCOPE: Fish oil-derived n-3 PUFA may improve cardiometabolic health through modulation of innate immunity. However, findings in clinical studies are conflicting. We hypothesized that n-3 PUFA supplementation would dose-dependently reduce the systemic inflammatory response to experimental endotoxemia in healthy humans. METHODS AND RESULTS: The Fenofibrate and omega-3 Fatty Acid Modulation of Endotoxemia (FFAME) study was an 8-wk randomized double-blind trial of placebo or n-3 PUFA supplementation (Lovaza 465 mg eicosapentaenoic acid (EPA) + 375 mg docosahexaenoic acid (DHA)) at "low" (1/day, 900 mg) or "high" (4/day, 3600 mg) dose in healthy individuals (N = 60; age 18-45; BMI 18-30; 43% female; 65% European-, 20% African-, 15% Asian-ancestry) before a low-dose endotoxin challenge (LPS 0.6 ng/kg intravenous bolus). The endotoxemia-induced temperature increase was significantly reduced with high-dose (p = 0.03) but not low-dose EPA + DHA compared to placebo. Although there was no statistically significant impact of EPA + DHA on individual inflammatory responses (tumor necrosis factor-α (TNF-α), IL-6, monocyte chemotactic protein (MCP-1), IL-1 receptor agonist (IL-1RA), IL-10, C-reactive protein (CRP), serum amyloid A (SAA)), there was a pattern of lower responses across all biomarkers with high-dose (nine of nine observed), but not low-dose EPA + DHA. CONCLUSION: EPA + DHA at 3600 mg/day, but not 900 mg/day, reduced fever and had a pattern of attenuated LPS induction of plasma inflammatory markers during endotoxemia. Clinically and nutritionally relevant long-chain n-3 PUFA regimens may have specific, dose-dependent, anti-inflammatory actions.


Assuntos
Endotoxemia/dietoterapia , Ácidos Graxos Ômega-3/farmacologia , Adolescente , Adulto , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/urina , Feminino , Óleos de Peixe/farmacologia , Voluntários Saudáveis , Humanos , Inflamação/dietoterapia , Inflamação/metabolismo , Isoprostanos/urina , Lipopolissacarídeos/toxicidade , Lipoproteínas/sangue , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Mol Biosyst ; 9(6): 1411-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23493899

RESUMO

Untargeted metabolomic analyses of plasma and red blood cells (RBCs) can provide complementary information on biomarkers of food consumption. To assess blood collection differences in biomarkers, fasting blood was drawn from 10 healthy individuals using sodium citrate and lithium heparin as anticoagulants. Plasma and RBCs were separated into aqueous and lipid fractions to be analyzed using 1D and 2D (1)H NMR spectroscopy. Fatty acids were analyzed using gas chromatography-mass spectrometry (GC-MS). Polyphenols were extracted from plasma and RBCs by micro-elution solid-phase extraction and analyzed by ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). (1)H NMR demonstrated higher aqueous metabolites such as glucose in plasma compared to RBCs, while RBCs contained higher ADP-ATP, creatine and acetone than plasma. Lipoproteins and their subclasses were higher in plasma than in RBCs. Percentages of saturated fatty acids (SFA) 16 : 0, 17 : 0, 20 : 0, 24 : 0 and polyunsaturated fatty acids (PUFA) 22 : 6 n-3 (docosahexaenoic acid) and 20 : 4 n-6 (arachidonic acid) were higher in RBCs than in plasma (p < 0.05), while SFA 14 : 0, monounsaturated fatty acids (MUFA) 14 : 1 n-5, 16 : 1 n-7, 17 : 1 n-7 and 18 : 1 n-9 and PUFA 18 : 3 n-3, 18 : 2 n-6, 18 : 3 n-6 and 20 : 3 n-6 were higher in plasma than in RBCs (p < 0.05). Polyphenols differed in plasma from those of RBCs. Biomarker concentrations were lower in sodium citrate compared to lithium heparin plasma. In conclusion, metabolomic profiles generated by NMR spectroscopy, GC-MS and UPLC-MS/MS analyses of RBCs versus plasma show complementary information on several specific molecular biomarkers that could be applied in nutritional assessment.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/análise , Eritrócitos/metabolismo , Adulto , Idoso , Glicemia/análise , Ingestão de Alimentos , Ácidos Graxos/sangue , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Humanos , Lipoproteínas/sangue , Masculino , Metaboloma , Metabolômica , Pessoa de Meia-Idade , Fosfolipídeos/sangue , Polifenóis/sangue , Espectrometria de Massas em Tandem , Triglicerídeos/sangue , Adulto Jovem
13.
Nat Med ; 18(12): 1768-77, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23142819

RESUMO

Adipocytes store excess energy in the form of triglycerides and signal the levels of stored energy to the brain. Here we show that adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component, results in obesity in mice with a shift in the diurnal rhythm of food intake, a result that is not seen when the gene is disrupted in hepatocytes or pancreatic islets. Changes in the expression of hypothalamic neuropeptides that regulate appetite are consistent with feedback from the adipocyte to the central nervous system to time feeding behavior. Ablation of the adipocyte clock is associated with a reduced number of polyunsaturated fatty acids in adipocyte triglycerides. This difference between mutant and wild-type mice is reflected in the circulating concentrations of polyunsaturated fatty acids and nonesterified polyunsaturated fatty acids in hypothalamic neurons that regulate food intake. Thus, this study reveals a role for the adipocyte clock in the temporal organization of energy regulation, highlights timing as a modulator of the adipocyte-hypothalamic axis and shows the impact of timing of food intake on body weight.


Assuntos
Fatores de Transcrição ARNTL/deficiência , Adipócitos/metabolismo , Regulação do Apetite/genética , Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Obesidade/genética , Fatores de Transcrição ARNTL/genética , Absorciometria de Fóton , Animais , Regulação do Apetite/fisiologia , Western Blotting , Calorimetria , Imunoprecipitação da Cromatina , Cromatografia Líquida , Primers do DNA/genética , Análise Discriminante , Metabolismo Energético/genética , Ácidos Graxos Insaturados/metabolismo , Deleção de Genes , Técnicas Histológicas , Hipotálamo/metabolismo , Espectrometria de Massas , Camundongos , Neuropeptídeos/metabolismo , Análise Serial de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas
14.
BMC Genomics ; 13: 334, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22823888

RESUMO

BACKGROUND: Changes in energy metabolism of the cells are common to many kinds of tumors and are considered a hallmark of cancer. Gas chromatography followed by time-of-flight mass spectrometry (GC-TOFMS) is a well-suited technique to investigate the small molecules in the central metabolic pathways. However, the metabolic changes between invasive carcinoma and normal breast tissues were not investigated in a large cohort of breast cancer samples so far. RESULTS: A cohort of 271 breast cancer and 98 normal tissue samples was investigated using GC-TOFMS-based metabolomics. A total number of 468 metabolite peaks could be detected; out of these 368 (79%) were significantly changed between cancer and normal tissues (p<0.05 in training and validation set). Furthermore, 13 tumor and 7 normal tissue markers were identified that separated cancer from normal tissues with a sensitivity and a specificity of >80%. Two-metabolite classifiers, constructed as ratios of the tumor and normal tissues markers, separated cancer from normal tissues with high sensitivity and specificity. Specifically, the cytidine-5-monophosphate / pentadecanoic acid metabolic ratio was the most significant discriminator between cancer and normal tissues and allowed detection of cancer with a sensitivity of 94.8% and a specificity of 93.9%. CONCLUSIONS: For the first time, a comprehensive metabolic map of breast cancer was constructed by GC-TOF analysis of a large cohort of breast cancer and normal tissues. Furthermore, our results demonstrate that spectrometry-based approaches have the potential to contribute to the analysis of biopsies or clinical tissue samples complementary to histopathology.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Mama/citologia , Mama/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Aminoácidos/metabolismo , Mama/patologia , Análise por Conglomerados , Metabolismo Energético , Ácidos Graxos não Esterificados/metabolismo , Feminino , Glicerofosfolipídeos/metabolismo , Humanos , Invasividade Neoplásica , Nucleotídeos/metabolismo , Análise de Componente Principal
15.
Chem Soc Rev ; 40(1): 387-426, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20717559

RESUMO

The study of biological systems in a holistic manner (systems biology) is increasingly being viewed as a necessity to provide qualitative and quantitative descriptions of the emergent properties of the complete system. Systems biology performs studies focussed on the complex interactions of system components; emphasising the whole system rather than the individual parts. Many perturbations to mammalian systems (diet, disease, drugs) are multi-factorial and the study of small parts of the system is insufficient to understand the complete phenotypic changes induced. Metabolomics is one functional level tool being employed to investigate the complex interactions of metabolites with other metabolites (metabolism) but also the regulatory role metabolites provide through interaction with genes, transcripts and proteins (e.g. allosteric regulation). Technological developments are the driving force behind advances in scientific knowledge. Recent advances in the two analytical platforms of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have driven forward the discipline of metabolomics. In this critical review, an introduction to metabolites, metabolomes, metabolomics and the role of MS and NMR spectroscopy will be provided. The applications of metabolomics in mammalian systems biology for the study of the health-disease continuum, drug efficacy and toxicity and dietary effects on mammalian health will be reviewed. The current limitations and future goals of metabolomics in systems biology will also be discussed (374 references).


Assuntos
Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metaboloma , Metabolômica/métodos , Animais , Cromatografia Líquida de Alta Pressão , Eletroforese , Cromatografia Gasosa-Espectrometria de Massas
16.
Metabolomics ; 5(3): 363-374, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20208976

RESUMO

Previous studies have shown that a combination of weight loss and fish oil supplementation reduce cardiovascular disease and diabetes risks by increasing adiponectin and reducing triacylglyceride concentrations, while weight loss alone significantly improves insulin sensitivity and reduces inflammation. Here, a metabolomic approach, using a combination of (1)H-Nuclear Magnetic Resonance spectroscopy, and gas and liquid chromatography and mass spectrometry, was employed to elucidate the metabolic changes in blood plasma following weight loss and fish oil supplementation. The intervention study was conducted over 24 weeks, with 93 female subjects randomised to one of three groups. Two groups followed a 12-week weight loss program, followed by a 12-week weight maintenance period and were randomised to fish or placebo oil capsules; a control group did not follow the weight loss program and were given placebo oil capsules. Lipid profiles changed dramatically upon fish oil intake and subtly across the two weight loss groups. While the fish oil supplementation increased the proportion of various phospholipid species, previously reported reductions in total triacylglycerides (TAGs) upon fish oil intake were shown to be driven by a reduction in a specific subset of the measured TAGs. This remodelling of triglycerides may represent further beneficial effects of fish oil supplementation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-009-0161-7) contains supplementary material, which is available to authorized users.

17.
FEBS Lett ; 568(1-3): 49-54, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15196919

RESUMO

Multiple sclerosis is a major cause of non-traumatic neurological disability. The identification of markers that differentiate disease progression is critical to effective therapy. A combination of NMR spectroscopic metabolic profiling of urine and statistical pattern recognition was used to detect focal inflammatory central nervous system (CNS) lesions induced by microinjection of a replication-deficient recombinant adenovirus expressing TNF-alpha or IL1-beta cDNA into the brains of Wistar rats. These animals were compared with a group of naïve rats and a group of animals injected with an equivalent null adenovirus. Urine samples were collected 7 days after adenovirus injection, when the inflammatory lesion is maximally active. Principal components analysis and Partial Least Squares-Discriminate analysis of the urine (1)H NMR spectra revealed significant differences between each of the cytokine adenovirus groups and the control groups; for the TNF-alpha group the main differences lay in citrate and succinate, while for the IL-1beta group the predominant changes occurred in leucine, isoleucine, valine and myo-inositol. Thus, we can identify urinary metabolic vectors that not only separate rats with inflammatory lesions in the brain from control animals, but also distinguish between different types of CNS inflammatory lesions.


Assuntos
Encéfalo/patologia , Interleucina-1/urina , Fator de Necrose Tumoral alfa/urina , Adenoviridae/genética , Animais , DNA Complementar , Vírus Defeituosos/genética , Interleucina-1/genética , Interleucina-1/fisiologia , Ressonância Magnética Nuclear Biomolecular , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA