Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 215(3): 992-1008, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28505389

RESUMO

Nitrogen (N) and phosphorus (P) have key roles in leaf metabolism, resulting in a strong coupling of chemical composition traits to metabolic rates in field-based studies. However, in such studies, it is difficult to disentangle the effects of nutrient supply per se on trait-trait relationships. Our study assessed how high and low N (5 mM and 0.4 mM, respectively) and P (1 mM and 2 µM, respectively) supply in 37 species from six plant functional types (PTFs) affected photosynthesis (A) and respiration (R) (in darkness and light) in a controlled environment. Low P supply increased scaling exponents (slopes) of area-based log-log A-N or R-N relationships when N supply was not limiting, whereas there was no P effect under low N supply. By contrast, scaling exponents of A-P and R-P relationships were altered by P and N supply. Neither R : A nor light inhibition of leaf R was affected by nutrient supply. Light inhibition was 26% across nutrient treatments; herbaceous species exhibited a lower degree of light inhibition than woody species. Because N and P supply modulates leaf trait-trait relationships, the next generation of terrestrial biosphere models may need to consider how limitations in N and P availability affect trait-trait relationships when predicting carbon exchange.


Assuntos
Ambiente Controlado , Nitrogênio/farmacologia , Fósforo/farmacologia , Folhas de Planta/fisiologia , Análise de Variância , Dióxido de Carbono/metabolismo , Luz , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Característica Quantitativa Herdável , Amido/metabolismo , Açúcares/metabolismo
2.
Glob Chang Biol ; 20(8): 2618-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24510889

RESUMO

Despite concern about the status of carbon (C) in the Arctic tundra, there is currently little information on how plant respiration varies in response to environmental change in this region. We quantified the impact of long-term nitrogen (N) and phosphorus (P) treatments and greenhouse warming on the short-term temperature (T) response and sensitivity of leaf respiration (R), the high-T threshold of R, and associated traits in shoots of the Arctic shrub Betula nana in experimental plots at Toolik Lake, Alaska. Respiration only acclimated to greenhouse warming in plots provided with both N and P (resulting in a ~30% reduction in carbon efflux in shoots measured at 10 and 20 °C), suggesting a nutrient dependence of metabolic adjustment. Neither greenhouse nor N+P treatments impacted on the respiratory sensitivity to T (Q10 ); overall, Q10 values decreased with increasing measuring T, from ~3.0 at 5 °C to ~1.5 at 35 °C. New high-resolution measurements of R across a range of measuring Ts (25-70 °C) yielded insights into the T at which maximal rates of R occurred (Tmax ). Although growth temperature did not affect Tmax , N+P fertilization increased Tmax values ~5 °C, from 53 to 58 °C. N+P fertilized shoots exhibited greater rates of R than nonfertilized shoots, with this effect diminishing under greenhouse warming. Collectively, our results highlight the nutrient dependence of thermal acclimation of leaf R in B. nana, suggesting that the metabolic efficiency allowed via thermal acclimation may be impaired at current levels of soil nutrient availability. This finding has important implications for predicting carbon fluxes in Arctic ecosystems, particularly if soil N and P become more abundant in the future as the tundra warms.


Assuntos
Aclimatação , Betula/metabolismo , Mudança Climática , Nitrogênio/metabolismo , Fósforo/metabolismo , Brotos de Planta/metabolismo , Alaska , Regiões Árticas , Betula/anatomia & histologia , Betula/crescimento & desenvolvimento , Respiração Celular , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Temperatura
3.
Am J Bot ; 99(10): 1702-14, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22984095

RESUMO

PREMISE OF THE STUDY: Consequences of global climate change are detectable in the historically nitrogen- and phosphorus-limited Arctic tundra landscape and have implications for the terrestrial carbon cycle. Warmer temperatures and elevated soil nutrient availability associated with increased microbial activity may influence rates of photosynthesis and respiration. • METHODS: This study examined leaf-level gas exchange, cellular ultrastructure, and related leaf traits in two dominant tundra species, Betula nana, a woody shrub, and Eriophorum vaginatum, a tussock sedge, under a 3-yr-old treatment gradient of nitrogen (N) and phosphorus (P) fertilization in the North Slope of Alaska. • KEY RESULTS: Respiration increased with N and P addition-the highest rates corresponding to the highest concentrations of leaf N in both species. The inhibition of respiration by light ("Kok effect") significantly reduced respiration rates in both species (P < 0.001), ranged from 12-63% (mean 34%), and generally decreased with fertilization for both species. However, in both species, observed rates of photosynthesis did not increase, and photosynthetic nitrogen use efficiency generally decreased under increasing fertilization. Chloroplast and mitochondrial size and density were highly sensitive to N and P fertilization (P < 0.001), though species interactions indicated divergent cellular organizational strategies. • CONCLUSIONS: Results from this study demonstrate a species-specific decoupling of respiration and photosynthesis under N and P fertilization, implying an alteration of the carbon balance of the tundra ecosystem under future conditions.


Assuntos
Betula/metabolismo , Ciclo do Carbono , Cyperaceae/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Análise de Variância , Regiões Árticas , Betula/citologia , Betula/crescimento & desenvolvimento , Betula/ultraestrutura , Biomassa , Ciclo do Carbono/efeitos da radiação , Dióxido de Carbono/metabolismo , Respiração Celular/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Cyperaceae/citologia , Cyperaceae/crescimento & desenvolvimento , Cyperaceae/ultraestrutura , Fertilização/efeitos da radiação , Luz , Células do Mesofilo/citologia , Células do Mesofilo/efeitos da radiação , Células do Mesofilo/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Mitocôndrias/ultraestrutura , Consumo de Oxigênio/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Estações do Ano , Temperatura
4.
Oecologia ; 144(2): 233-44, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15891839

RESUMO

Measurements of photosynthesis at saturating irradiance and CO2 partial pressure, Amax, "adjusted" normalised difference vegetation index, RaNDVI, and photochemical reflectance index, RPRI, were made on trees sampled along a soil chronosequence to investigate the relationship between carbon uptake and ecosystem development in relation to nutrient availability. Measurements were made on the three most dominant species at six sites along the sequence in South Westland, New Zealand with soil age ranging from < 6 to 120,000 years resulting from the retreat of the Franz Josef glacier. The decrease in soil phosphorus availability with increasing soil age and high soil nitrogen availability at the two youngest sites, due to the presence of a nitrogen-fixing species, provided marked differences in nutrient availability. Mean Amax was high at the two youngest sites, then decreased markedly with increasing site age. Analysis of the data for individual species within sites revealed separation of groups of species in the response of Amax to Nm and Pm, suggesting complex interactions between the two nutrients. There were strong linear relationships for leaf-level RaNDVI and RPRI with Amax, at high irradiance, showing that measurements of reflectance indices can be used to estimate Amax for foliage with a range in morphology and nutrient concentrations. Notwithstanding the change in species composition from angiosperms to conifers with increasing site age, the presence of nitrogen-fixing species, the variability in foliage morphology from flat leaves to imbricate scales and a wide range in foliar nitrogen and phosphorus concentrations, there were strong positive linear relationships between site average Amax and foliage nitrogen, Nm, and phosphorus, Pm, concentrations on a foliage mass basis. The results provide insights to interpret the regulation of photosynthesis across natural ecosystems with marked gradients in nitrogen and phosphorus availability.


Assuntos
Ecossistema , Fotossíntese/fisiologia , Solo/análise , Luz Solar , Árvores/fisiologia , Análise de Variância , Dióxido de Carbono/metabolismo , Nova Zelândia , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/fisiologia , Especificidade da Espécie
5.
Oecologia ; 143(4): 588-97, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15812655

RESUMO

This study explores the relationship between the normalized difference vegetation index (NDVI) and aboveground plant biomass for tussock tundra vegetation and compares it to a previously established NDVI-biomass relationship for wet sedge tundra vegetation. In addition, we explore inter-annual variation in NDVI in both these contrasting vegetation communities. All measurements were taken across long-term experimental treatments in wet sedge and tussock tundra communities at the Toolik Lake Long Term Ecological Research (LTER) site, in northern Alaska. Over 15 years (for wet sedge tundra) and 14 years (for tussock tundra), N and P were applied in factorial experiments (N, P and N+P), air temperature was increased using greenhouses with and without N+P fertilizer, and light intensity was reduced by 50% using shade cloth. during the peak growing seasons of 2001, 2002, and 2003, NDVI measurements were made in both the wet sedge and tussock tundra experimental treatment plots, creating a 3-year time series of inter-annual variation in NDVI. We found that: (1) across all tussock experimental tundra treatments, NDVI is correlated with aboveground plant biomass (r2 = 0.59); (2) NDVI-biomass relationships for tussock and wet sedge tundra communities are community specific, and; (3) NDVI values for tussock tundra communities are typically, but not always, greater than for wet sedge tundra communities across all experimental treatments. We suggest that differences between the response of wet sedge and tussock tundra communities in the same experimental treatments result from the contrasting degree of heterogeneity in species and functional types that characterize each of these Arctic tundra vegetation communities.


Assuntos
Ecossistema , Meio Ambiente , Fenômenos Fisiológicos Vegetais , Temperatura , Alaska , Análise de Variância , Biomassa , Estudos Longitudinais , Nitrogênio , Fósforo
6.
New Phytol ; 166(2): 513-23, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15819914

RESUMO

Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].


Assuntos
Dióxido de Carbono/fisiologia , Xanthium/fisiologia , Atmosfera/química , Biomassa , Metabolismo Energético/fisiologia , Frutas/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Xanthium/metabolismo
7.
Tree Physiol ; 25(4): 447-56, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15687093

RESUMO

We assessed the relative limitations to photosynthesis imposed by stomatal and non-stomatal processes in Dacrydium cupressinum Lamb. (Podocarpaceae), which is the dominant species in a native, mixed conifer-broad-leaved rainforest in New Zealand. For comparison, we included three co-occurring broad-leaved tree species (Meterosideros umbellata Cav. (Myrtaceae), Weinmannia racemosa L.f. (Cunoniaceae) and Quintinia acutifolia Kirk (Escalloniaceae)) that differ in phylogeny and in leaf morphology from D. cupressinum. We found that low foliage phosphorus content on an area basis (P(a)) limited light-saturated photosynthesis on an area basis (A(sat)) in Q. acutifolia. Depth in the canopy did not generally affect A(sat) or the relative limitations to A(sat) because of stomatal and non-stomatal constraints, despite reductions in the ratio of foliage mass to area, foliar nitrogen on an area basis (N(a)) and P(a) with depth in the canopy. In the canopy-dominant conifer D. cupressinum, A(sat) was low, consistent with low values of the maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation (V(cmax)). In comparison, the A(sat) response of the three broad-leaved tree species was quite variable. Although A(sat) was high in the canopy-dominant M. umbellata, it was low in the sub-canopy trees W. racemosa and Q. acutifolia. Relative stomatal limitation to photosynthesis was more pronounced in W. racemosa (40%) than in the other three species (28-33%). Despite differences in degree, non-stomatal limitation to A(sat) predominated in all tree species.


Assuntos
Magnoliopsida/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Traqueófitas/fisiologia , Árvores/fisiologia , Clorofila/fisiologia , Clima , Ecossistema , Nova Zelândia , Nitrogênio/fisiologia , Fósforo/fisiologia , Luz Solar
8.
Oecologia ; 143(2): 271-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15657760

RESUMO

We measured the response of dark respiration (R(d)) to temperature and foliage characteristics in the upper canopies of tree species in temperate rainforest communities in New Zealand along a soil chronosequence (six sites from 6 years to 120,000 years). The chronosequence provided a vegetation gradient characterised by significant changes in soil nutrition. This enabled us to examine the extent to which changes in dark respiration can be applied across forest biomes and the utility of scaling rules in whole-canopy carbon modelling. The response of respiration to temperature in the dominant tree species differed significantly between sites along the sequence. This involved changes in both R(d) at a reference temperature (R(10)) and the extent to which R(d) increased with temperature (described by E(o), a parameter related to the energy of activation, or the change in R(d) over a 10 degrees C range, Q(10)). Site averaged E(o) ranged from 44.4 kJ mol(-1) K(-1) at the 60-year-old site to 26.0 kJ mol(-1) K(-1) at the oldest, most nutrient poor, site. Relationships between respiratory and foliage characteristics indicated that both the temperature response of respiration (E(o) or Q(10)) and the instantaneous rate of respiration increased with both foliar nitrogen and phosphorus content. The ratio of photosynthetic capacity (Whitehead et al. in Oecologia 2005) to respiration (A(max)/R(d)) attained values in excess of 15 for species in the 6- to 120-year-old sites, but thereafter decreased significantly to around five at the 120,000-year-old site. This indicates that shoot carbon acquisition is regulated by nutrient limitations in the retrogressing ecosystems on the oldest sites. Our findings indicate that respiration and its temperature response will vary according to soil age and, therefore, to soil nutrient availability and the stage of forest development. Thus, variability in respiratory characteristics for canopies should be considered when using models to integrate respiration at large spatial scales.


Assuntos
Dióxido de Carbono/metabolismo , Grossulariaceae/fisiologia , Solo/análise , Temperatura , Árvores/fisiologia , Fatores Etários , Análise de Variância , Modelos Biológicos , Nova Zelândia , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo
9.
Oecologia ; 135(3): 414-21, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12721832

RESUMO

This study explores the relationship between the normalized difference vegetation index (NDVI), aboveground plant biomass, and ecosystem C fluxes including gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem production. We measured NDVI across long-term experimental treatments in wet sedge tundra at the Toolik Lake LTER site, in northern Alaska. Over 13 years, N and P were applied in factorial experiments (N, P and N + P), air temperature was increased using greenhouses with and without N + P fertilizer, and light intensity (photosynthetically active photon flux density) was reduced by 50% using shade cloth. Within each treatment plot, NDVI, aboveground biomass and whole-system CO(2) flux measurements were made at the same sampling points during the peak-growing season of 2001. We found that across all treatments, NDVI is correlated with aboveground biomass ( r(2)=0.84), GEP ( r(2)=0.75) and ER ( r(2)=0.71), providing a basis for linking remotely sensed NDVI to aboveground biomass and ecosystem carbon flux.


Assuntos
Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Fotossíntese , Biomassa , Ecossistema , Monitoramento Ambiental , Gases , Nitrogênio/metabolismo , Fósforo/metabolismo , Fenômenos Fisiológicos Vegetais , Astronave
10.
Oecologia ; 135(2): 194-201, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12698340

RESUMO

Plant population and community dynamics may be altered by increasing atmospheric CO(2) concentrations [[CO(2)]] through intraspecific variation in the responses of vegetative and reproductive growth. Although these responses may be regulated by age at flowering, little is known about the direct effects of age at flowering on growth responses to elevated [CO(2)]. In this study, we examined the interactive effects of elevated [CO(2)] and age at flowering on absolute and relative allocation to vegetative and reproductive growth in the determinate, short-day species Xanthium strumarium L. (common cocklebur). Six cohorts were planted at 5-day intervals in chambers maintained at either 365 or 730 micro mol mol(-1) CO(2), with an 18-h photoperiod and a non-limiting nutrient supply. All plants were simultaneously induced to flower by switching the photoperiod to 12 h for 2 days, then switching back to an 18-h photoperiod for the remainder of the experiment. All plants were harvested 15 days after the onset of flowering. Total plant biomass increased 11-41% with increasing [CO(2)] and 45% from the youngest to the oldest cohort. Vegetative growth responses to elevated [CO(2)] significantly increased with increasing age at flowering, associated with increasing sink relative to source capacity. In contrast, total fruit mass decreased 32% from the youngest to the oldest cohort and was not significantly affected by CO(2) supply. Relative biomass allocation to fruit decreased 47% from the youngest to the oldest cohort, reflecting decreased numbers of fruit, and 6-28% with increasing [CO(2)], reflecting decreased mean mass per mature fruit. Our findings suggest that elevated [CO(2)] may increase vegetative growth in Xanthium without increasing reproductive biomass, and that age at flowering may influence these responses through effects on source:sink balance. Further, changes in the allometric relationship between vegetative and reproductive growth associated with growth in elevated [CO(2)] suggest that long-term population and community-level responses to elevated [CO(2)] may differ substantially from predictions based on vegetative responses.


Assuntos
Dióxido de Carbono/metabolismo , Flores/fisiologia , Xanthium/fisiologia , Flores/metabolismo , Frutas , Folhas de Planta , Raízes de Plantas , Caules de Planta , Reprodução/fisiologia , Estações do Ano , Xanthium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA