Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
ALTEX ; 39(3): 388­404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35288757

RESUMO

The application of in vitro biological assays as new approach methodologies (NAMs) to support grouping of UVCB (unknown or variable composition, complex reaction products, and biological materials) substances has recently been demonstrated. In addition to cell-based phenotyping as NAMs, in vitro transcriptomic profiling is used to gain deeper mechanistic understanding of biological responses to chemicals and to support grouping and read-across. However, the value of gene expression profiling for characterizing complex substances like UVCBs has not been explored. Using 141 petroleum substance extracts, we performed dose-response transcriptomic profiling in human induced pluripotent stem cell (iPSC)-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, as well as cell lines MCF7 and A375. The goal was to determine whether transcriptomic data can be used to group these UVCBs and to further characterize the molecular basis for in vitro biological responses. We found distinct transcriptional responses for petroleum substances by manufacturing class. Pathway enrichment informed interpretation of effects of substances and UVCB petroleum-class. Transcriptional activity was strongly correlated with concentration of polycyclic aromatic compounds (PAC), especially in iPSC-derived hepatocytes. Supervised analysis using transcriptomics, alone or in combination with bioactivity data collected on these same substances/cells, suggest that transcriptomics data provide useful mechanistic information, but only modest additional value for grouping. Overall, these results further demonstrate the value of NAMs for grouping of UVCBs, identify informative cell lines, and provide data that could be used for justifying selection of substances for further testing that may be required for registration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Petróleo , Bioensaio , Células Endoteliais , Humanos , Transcriptoma
2.
ALTEX ; 38(1): 123-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33086383

RESUMO

One of the most challenging areas in regulatory science is assessment of the substances known as UVCB (unknown or variable composition, complex reaction products and biological materials). Because the inherent complexity and variability of UVCBs present considerable challenges for establishing sufficient substance similarity based on chemical characteristics or other data, we hypothesized that new approach methodologies (NAMs), including in vitro test-derived biological activity signatures to characterize substance similarity, could be used to support grouping of UVCBs. We tested 141 petroleum substances as representative UVCBs in a compendium of 15 human cell types representing a variety of tissues. Petroleum substances were assayed in dilution series to derive point of departure estimates for each cell type and phenotype. Extensive quality control measures were taken to ensure that only high-confidence in vitro data were used to determine whether current groupings of these petroleum substances, based largely on the manufacturing process and physico-chemical properties, are justifiable. We found that bioactivity data-based groupings of petroleum substances were generally consistent with the manufacturing class-based categories. We also showed that these data, especially bioactivity from human induced pluripotent stem cell (iPSC)-derived and primary cells, can be used to rank substances in a manner highly concordant with their expected in vivo hazard potential based on their chemical compositional profile. Overall, this study demonstrates that NAMs can be used to inform groupings of UVCBs, to assist in identification of repre­sentative substances in each group for testing when needed, and to fill data gaps by read-across.


Assuntos
Alternativas aos Testes com Animais/métodos , Substâncias Perigosas/química , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Petróleo/análise , Petróleo/toxicidade , Testes de Toxicidade/métodos , Substâncias Perigosas/toxicidade , Humanos
3.
Toxicol Appl Pharmacol ; 381: 114711, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31425687

RESUMO

The potential for cardiotoxicity is carefully evaluated for pharmaceuticals, as it is a major safety liability. However, environmental chemicals are seldom tested for their cardiotoxic potential. Moreover, there is a large variability in both baseline and drug-induced cardiovascular risk in humans, but data are lacking on the degree to which susceptibility to chemically-induced cardiotoxicity may also vary. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes have become an important in vitro model for drug screening. Thus, we hypothesized that a population-based model of iPSC-derived cardiomyocytes from a diverse set of individuals can be used to assess potential hazard and inter-individual variability in chemical effects on these cells. We conducted concentration-response screening of 134 chemicals (pharmaceuticals, industrial and environmental chemicals and food constituents) in iPSC-derived cardiomyocytes from 43 individuals, comprising both sexes and diverse ancestry. We measured kinetic calcium flux and conducted high-content imaging following chemical exposure, and utilized a panel of functional and cytotoxicity parameters in concentration-response for each chemical and donor. We show reproducible inter-individual variability in both baseline and chemical-induced effects on iPSC-derived cardiomyocytes. Further, chemical-specific variability in potency and degree of population variability were quantified. This study shows the feasibility of using an organotypic population-based human in vitro model to quantitatively assess chemicals for which little cardiotoxicity information is available. Ultimately, these results advance in vitro toxicity testing methodologies by providing an innovative tool for population-based cardiotoxicity screening, contributing to the paradigm shift from traditional animal models of toxicity to in vitro toxicity testing methods.


Assuntos
Cardiotoxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Miócitos Cardíacos , Testes de Toxicidade/métodos , Cálcio/metabolismo , Células Cultivadas , Feminino , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fenótipo , Grupos Raciais
4.
Clin Pharmacol Ther ; 105(5): 1175-1186, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30346629

RESUMO

"Thorough QT/corrected QT (QTc)" (TQT) studies are cornerstones of clinical cardiovascular safety assessment. However, TQT studies are resource intensive, and preclinical models predictive of the threshold of regulatory concern are lacking. We hypothesized that an in vitro model using induced pluripotent stem cell (iPSC)-derived cardiomyocytes from a diverse sample of human subjects can serve as a "TQT study in a dish." For 10 positive and 3 negative control drugs, in vitro concentration-QTc, computed using a population Bayesian model, accurately predicted known in vivo concentration-QTc. Moreover, predictions of the percent confidence that the regulatory threshold of 10 ms QTc prolongation would be breached were also consistent with in vivo evidence. This "TQT study in a dish," consisting of a population-based iPSC-derived cardiomyocyte model and Bayesian concentration-QTc modeling, has several advantages over existing in vitro platforms, including higher throughput, lower cost, and the ability to accurately predict the in vivo concentration range below the threshold of regulatory concern.


Assuntos
Cardiotoxinas , Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Modelos Cardiovasculares , Miócitos Cardíacos/efeitos dos fármacos , Cardiotoxinas/análise , Cardiotoxinas/farmacocinética , Humanos , Técnicas In Vitro/métodos , Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/diagnóstico , Valor Preditivo dos Testes
5.
Sci Rep ; 8(1): 14882, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291268

RESUMO

The adoption of a new technology into basic research, and industrial and clinical settings requires rigorous testing to build confidence in the reproducibility, reliability, robustness, and relevance of these models. Tissue chips are promising new technology, they have the potential to serve as a valuable tool in biomedical research, as well as pharmaceutical development with regards to testing for efficacy and safety. The principal goals of this study were to validate a previously established proximal tubule tissue chip model in an independent laboratory and to extend its utility to testing of nephrotoxic compounds. Here, we evaluated critical endpoints from the tissue chip developer laboratory, focusing on biological relevance (long-term viability, baseline protein and gene expression, ammoniagenesis, and vitamin D metabolism), and toxicity biomarkers. Tissue chip experiments were conducted in parallel with traditional 2D culture conditions using two different renal proximal tubule epithelial cell sources. The results of these studies were then compared to the findings reported by the tissue chip developers. While the overall transferability of this advanced tissue chip platform was a success, the reproducibility with the original report was greatly dependent on the cell source. This study demonstrates critical importance of developing microphysiological platforms using renewable cell sources.


Assuntos
Técnicas de Cultura de Células/instrumentação , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Antibacterianos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Desenvolvimento de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Humanos , Túbulos Renais Proximais/metabolismo , Polimixina B/toxicidade , Transferência de Tecnologia , Vitamina D/metabolismo
6.
Assay Drug Dev Technol ; 15(6): 267-279, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771372

RESUMO

Endothelial cells (ECs) play a major role in blood vessel formation and function. While there is longstanding evidence for the potential of chemical exposures to adversely affect EC function and vascular development, the hazard potential of chemicals with respect to vascular effects is not routinely evaluated in safety assessments. Induced pluripotent stem cell (iPSC)-derived ECs promise to provide a physiologically relevant, organotypic culture model that is amenable for high-throughput (HT) EC toxicant screening and may represent a viable alternative to traditional in vitro models, including human umbilical vein endothelial cells (HUVECs). To evaluate the utility of iPSC-ECs for multidimensional HT toxicity profiling of chemicals, both iPSC-ECs and HUVECs were exposed to selected positive (angiogenesis inhibitors, cytotoxic agents) and negative compounds in concentration response for either 16 or 24 h in a 384-well plate format. Furthermore, chemical effects on vascularization were quantified using EC angiogenesis on biological (Geltrex™) and synthetic (SP-105 angiogenesis hydrogel) extracellular matrices. Cellular toxicity was assessed using high-content live cell imaging and the CellTiter-Glo® assay. Assay performance indicated good to excellent assay sensitivity and reproducibility for both cell types investigated. Both iPSC-derived ECs and HUVECs formed tube-like structures on Geltrex™ and hydrogel, an effect that was inhibited by angiogenesis inhibitors and cytotoxic agents in a concentration-dependent manner. The quality of HT assays in HUVECs was generally higher than that in iPSC-ECs. Altogether, this study demonstrates the capability of ECs for comprehensive assessment of the biological effects of chemicals on vasculature in a HT compatible format.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Células Endoteliais da Veia Umbilical Humana/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Testes de Toxicidade , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Imageamento Tridimensional , Relação Estrutura-Atividade
7.
Environ Sci Technol ; 51(12): 7197-7207, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28502166

RESUMO

Substances of Unknown or Variable composition, Complex reaction products, and Biological materials (UVCBs), including many refined petroleum products, present a major challenge in regulatory submissions under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and US High Production Volume regulatory regimes. The inherent complexity of these substances, as well as variability in composition obfuscates detailed chemical characterization of each individual substance and their grouping for human and environmental health evaluation through read-across. In this study, we applied ion mobility mass spectrometry in conjunction with cheminformatics-based data integration and visualization to derive substance-specific signatures based on the distribution and abundance of various heteroatom classes. We used petroleum substances from four petroleum substance manufacturing streams and evaluated their chemical composition similarity based on high-dimensional substance-specific quantitative parameters including m/z distribution, drift time, carbon number range, and associated double bond equivalents and hydrogen-to-carbon ratios. Data integration and visualization revealed group-specific similarities for petroleum substances. Observed differences within a product group were indicative of batch- or manufacturer-dependent variation. We demonstrate how high-resolution analytical chemistry approaches can be used effectively to support categorization of UVCBs based on their heteroatom composition and how such data can be used in regulatory decision-making.


Assuntos
Poluentes Ambientais/química , Espectrometria de Massas , Petróleo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA