Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281217

RESUMO

BACKGROUND AND AIMS: Hypercholesterolemia is a major risk factor for atherosclerosis and cardiovascular diseases. Although resistant to hypercholesterolemia, the mouse is a prominent model in cardiovascular research. To assess the contribution of bile acids to this protective phenotype, we explored the impact of a 2-week-long dietary cholesterol overload on cholesterol and bile acid metabolism in mice. METHODS: Bile acid, oxysterol, and cholesterol metabolism and transport were assessed by quantitative real-time PCR, western blotting, GC-MS/MS, or enzymatic assays in the liver, the gut, the kidney, as well as in the feces, the blood, and the urine. RESULTS: Plasma triglycerides and cholesterol levels were unchanged in mice fed a cholesterol-rich diet that contained 100-fold more cholesterol than the standard diet. In the liver, oxysterol-mediated LXR activation stimulated the synthesis of bile acids and in particular increased the levels of hydrophilic muricholic acids, which in turn reduced FXR signaling, as assessed in vivo with Fxr reporter mice. Consequently, biliary and basolateral excretions of bile acids and cholesterol were increased, whereas portal uptake was reduced. Furthermore, we observed a reduction in intestinal and renal bile acid absorption. CONCLUSIONS: These coordinated events are mediated by increased muricholic acid levels which inhibit FXR signaling in favor of LXR and SREBP2 signaling to promote efficient fecal and urinary elimination of cholesterol and neo-synthesized bile acids. Therefore, our data suggest that enhancement of the hydrophilic bile acid pool following a cholesterol overload may contribute to the resistance to hypercholesterolemia in mice. This work paves the way for new therapeutic opportunities using hydrophilic bile acid supplementation to mitigate hypercholesterolemia.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol na Dieta/efeitos adversos , Ácidos Cólicos/uso terapêutico , Hipercolesterolemia/prevenção & controle , Animais , Colesterol na Dieta/metabolismo , Avaliação Pré-Clínica de Medicamentos , Hipercolesterolemia/etiologia , Masculino , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/metabolismo
2.
J Nutr Biochem ; 79: 108361, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179409

RESUMO

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a new family of endogenous lipids recently discovered. Several studies reported that some FAHFAs have antidiabetic and anti-inflammatory effects. The objective of this study was to explore the impact of two FAHFAs, 9-PAHPA or 9-OAHPA, on the metabolism of mice. C57Bl/6J male mice, 6 weeks old, were divided into 3 groups of 10 mice each. One group received a control diet and the two others groups received the control diet supplemented with 9-PAHPA or 9-OAHPA for 12 weeks. Mouse weight and body composition were monitored throughout the study. Some days before euthanasia, energy expenditure, glucose tolerance and insulin sensitivity were also determined. After sacrifice, blood and organs were collected for relevant molecular, biochemical and histological analyses. Although high intake of 9-PAHPA or 9-OAHPA increased basal metabolism, it had no direct effect on body weight. Interestingly, the 9-PAHPA or 9-OAHPA intake increased insulin sensitivity but without modifying glucose tolerance. Nevertheless, 9-PAHPA intake induced a loss of glucose-stimulated insulin secretion. Surprisingly, both studied FAHFAs induced hepatic steatosis and fibrosis in some mice, which were more marked with 9-PAHPA. Finally, a slight remodeling of white adipose tissue was also observed with 9-PAHPA intake. In conclusion, the long-term high intake of 9-PAHPA or 9-OAHPA increased basal metabolism and insulin sensitivity in healthy mice. However, this effect, highly likely beneficial in a diabetic state, was accompanied by manifest liver damage in certain mice that should deserve special attention in both healthy and pathological studies.


Assuntos
Metabolismo Basal/efeitos dos fármacos , Ácidos Graxos/farmacologia , Resistência à Insulina , Fígado/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Glicemia/análise , Peso Corporal/efeitos dos fármacos , Metabolismo Energético , Ácidos Graxos/administração & dosagem , Ácidos Graxos/efeitos adversos , Fígado Gorduroso/metabolismo , Teste de Tolerância a Glucose , Homeostase , Inflamação/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Diabetes ; 63(2): 471-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24186868

RESUMO

Lipopolysaccharides (LPS) of the cell wall of gram-negative bacteria trigger inflammation, which is associated with marked changes in glucose metabolism. Hyperglycemia is frequently observed during bacterial infection and it is a marker of a poor clinical outcome in critically ill patients. The aim of the current study was to investigate the effect of an acute injection or continuous infusion of LPS on experimentally induced hyperglycemia in wild-type and genetically engineered mice. The acute injection of a single dose of LPS produced an increase in glucose disposal and glucose-stimulated insulin secretion (GSIS). Continuous infusion of LPS through mini-osmotic pumps was also associated with increased GSIS. Finally, manipulation of LPS detoxification by knocking out the plasma phospholipid transfer protein (PLTP) led to increased glucose disposal and GSIS. Overall, glucose tolerance and GSIS tests supported the hypothesis that mice treated with LPS develop glucose-induced hyperinsulinemia. The effects of LPS on glucose metabolism were significantly altered as a result of either the accumulation or antagonism of glucagon-like peptide 1 (GLP-1). Complementary studies in wild-type and GLP-1 receptor knockout mice further implicated the GLP-1 receptor-dependent pathway in mediating the LPS-mediated changes in glucose metabolism. Hence, enhanced GLP-1 secretion and action underlies the development of glucose-mediated hyperinsulinemia associated with endotoxemia.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Lipopolissacarídeos/toxicidade , Receptores de Glucagon/metabolismo , Animais , Glicemia , Peptídeo 1 Semelhante ao Glucagon/genética , Receptor do Peptídeo Semelhante ao Glucagon 1 , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptores de Glucagon/genética
4.
J Biol Chem ; 277(2): 1324-31, 2002 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-11684682

RESUMO

Ileal bile acid-binding protein (I-BABP) is a cytosolic protein that binds bile acid (BA) specifically. In the ileum, it is thought to be implied in their enterohepatic circulation. Because the fecal excretion of BA represents the main physiological way of elimination for cholesterol (CS), the I-BABP gene could have a major function in CS homeostasis. Therefore, the I-BABP gene expression might be controlled by CS. I-BABP mRNA levels were significatively increased when the human enterocyte-like CaCo-2 cells were CS-deprived and repressed when CS were added to the medium. A highly conserved sterol regularory element-like sequence (SRE) and a putative GC box were found in human I-BABP gene promoter. Different constructs of human I-BABP promoter, cloned upstream of a chloramphenicol acetyltransferase (CAT) reporter gene, have been used in transfections studies. CAT activity of the wild type promoter was increased in presence of CS-deprived medium, and conversely, decreased by a CS-supplemented medium. The inductive effect of CS depletion was fully abolished when the putative SRE sequence and/or GC box were mutated or deleted. Co-transfections experiments with the mature isoforms of human sterol responsive element-binding proteins (SREBPs) and Sp1 demonstrate that the CS-mediated regulation of I-BABP gene was dependent of these transcriptional factors. Paradoxically, mice subjected to a standard chow supplemented with 2% CS for 14 days exhibited a significant rise in both I-BABP and SREBP1c mRNA levels. We show that in vivo, this up-regulation could be explained by a recently described regulatory pathway involving a positive regulation of SREBP1c by liver-X-receptor following a high CS diet.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Transporte/genética , Colesterol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidroxiesteroide Desidrogenases , Íleo/metabolismo , Glicoproteínas de Membrana , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares , Fatores de Transcrição , Animais , Sequência de Bases , Células CACO-2 , Proteínas de Transporte/metabolismo , Colesterol/administração & dosagem , Colesterol na Dieta , Técnicas de Cultura , Regulação da Expressão Gênica/fisiologia , Genes Reporter , Humanos , Receptores X do Fígado , Masculino , Camundongos , Dados de Sequência Molecular , Receptores Nucleares Órfãos , Coelhos , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/metabolismo , Receptores dos Hormônios Tireóideos/agonistas , Receptores dos Hormônios Tireóideos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA