Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
NPJ Biofilms Microbiomes ; 6(1): 16, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221294

RESUMO

Dysbiosis of the intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We performed a phase I/II dose-finding and safety study on the effect of oral intake of the anaerobic butyrogenic strain Anaerobutyricum soehngenii on glucose metabolism in 24 subjects with metabolic syndrome. We found that treatment with A. soehngenii was safe and observed a significant correlation between the measured fecal abundance of administered A. soehngenii and improvement in peripheral insulin sensitivity after 4 weeks of treatment. This was accompanied by an altered microbiota composition and a change in bile acid metabolism. Finally, we show that metabolic response upon administration of A. soehngenii (defined as improved insulin sensitivity 4 weeks after A. soehngenii intake) is dependent on microbiota composition at baseline. These data in humans are promising, but additional studies are needed to reproduce our findings and to investigate long-term effects, as well as other modes of delivery.


Assuntos
Bactérias/classificação , Clostridiales/fisiologia , Fezes/microbiologia , Glucose/metabolismo , Síndrome Metabólica/dietoterapia , Administração Oral , Adulto , Idoso , Bactérias/genética , Bactérias/isolamento & purificação , Ácidos e Sais Biliares/metabolismo , Suplementos Nutricionais/efeitos adversos , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal , Humanos , Masculino , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Projetos Piloto , Análise de Sequência de DNA , Resultado do Tratamento
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt A): 1056-1067, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28733267

RESUMO

Angiopoietin-like 4 (ANGPTL4) raises plasma triglyceride levels by inhibiting lipoprotein lipase. A set of compounds that are able to reduce plasma triglyceride levels are bile acids (BA). Because BA have been shown to decrease ANGPTL4 secretion by intestinal cells, we hypothesized that BA lower plasma triglycerides (partly) via ANGPTL4. To test that hypothesis, wild-type and Angptl4-/- mice were fed chow supplemented with taurocholic acid (TCA) for seven days. TCA supplementation effectively lowered plasma triglycerides in wild-type and Angptl4-/- mice, indicating that ANGPTL4 is not required for plasma triglyceride-lowering by BA. Intriguingly, however, plasma and hepatic BA concentrations were significantly lower in TCA-supplemented Angptl4-/- mice than in TCA-supplemented wild-type mice. These changes in the Angptl4-/- mice were accompanied by lower BA levels in ileal scrapings and decreased expression of FXR-target genes in the ileum, including the BA transporter Slc10a2. By contrast, faecal excretion of specifically primary BA was higher in the Angptl4-/- mice, suggesting that loss of ANGPTL4 impairs intestinal BA absorption. Since the gut microbiota converts primary BA into secondary BA, elevated excretion of primary BA in Angptl4-/- mice may reflect differences in gut microbial composition and/or functionality. Indeed, colonic microbial composition was markedly different between Angptl4-/- and wild-type mice. Suppression of the gut bacteria using antibiotics abolished differences in plasma, hepatic, and faecal BA levels between TCA-supplemented Angptl4-/- and wild-type mice. In conclusion, 1) ANGPTL4 is not involved in the triglyceride-lowering effect of BA; 2) ANGPTL4 promotes BA absorption during TCA supplementation via a mechanism dependent on the gut microbiota.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Ácidos e Sais Biliares/metabolismo , Suplementos Nutricionais , Microbioma Gastrointestinal/fisiologia , Absorção Intestinal/efeitos dos fármacos , Ácido Taurocólico , Proteína 4 Semelhante a Angiopoietina/genética , Animais , Ácidos e Sais Biliares/genética , Absorção Intestinal/genética , Camundongos , Camundongos Knockout , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo , Ácido Taurocólico/farmacocinética , Ácido Taurocólico/farmacologia , Triglicerídeos/sangue
3.
J Hepatol ; 65(6): 1198-1208, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27312946

RESUMO

BACKGROUND & AIMS: Severe malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. Peroxisomes and mitochondria play key roles in various hepatic metabolic functions including lipid metabolism and energy production. To investigate the involvement of these organelles in the mechanisms underlying malnutrition-induced hepatic dysfunction we developed a rat model of malnutrition. METHODS: Weanling rats were placed on a low protein or control diet (5% or 20% of calories from protein, respectively) for four weeks. Peroxisomal and mitochondrial structural features were characterized using immunofluorescence and electron microscopy. Mitochondrial function was assessed using high-resolution respirometry. A novel targeted quantitative proteomics method was applied to analyze 47 mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle and fatty acid ß-oxidation pathways. RESULTS: Low protein diet-fed rats developed hypoalbuminemia and hepatic steatosis, consistent with the human phenotype. Hepatic peroxisome content was decreased and metabolomic analysis indicated peroxisomal dysfunction. This was followed by changes in mitochondrial ultrastructure and increased mitochondrial content. Mitochondrial function was impaired due to multiple defects affecting respiratory chain complex I and IV, pyruvate uptake and several ß-oxidation enzymes, leading to strongly reduced hepatic ATP levels. Fenofibrate supplementation restored hepatic peroxisome abundance and increased mitochondrial ß-oxidation capacity, resulting in reduced steatosis and normalization of ATP and plasma albumin levels. CONCLUSIONS: Malnutrition leads to severe impairments in hepatic peroxisomal and mitochondrial function, and hepatic metabolic dysfunction. We discuss the potential future implications of our findings for the clinical management of malnourished children. LAY SUMMARY: Severe malnutrition in children is associated with metabolic disturbances that are poorly understood. In order to study this further, we developed a malnutrition animal model and found that severe malnutrition leads to an impaired function of liver mitochondria which are essential for energy production and a loss of peroxisomes, which are important for normal liver metabolic function.


Assuntos
Desnutrição , Trifosfato de Adenosina , Animais , Criança , Fígado Gorduroso , Humanos , Fígado , Mitocôndrias , Oxirredução , Ratos
4.
J Lipid Res ; 57(8): 1455-64, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27313057

RESUMO

Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins.


Assuntos
Colesterol/biossíntese , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fígado/metabolismo , Lovastatina/farmacologia , Animais , Colesterol/sangue , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica/efeitos dos fármacos , Glutaratos/metabolismo , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Eliminação Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
5.
PLoS One ; 10(8): e0136364, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26292284

RESUMO

The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention.


Assuntos
Fibras na Dieta/uso terapêutico , Ácidos Graxos Voláteis/metabolismo , Galactanos/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Mananas/uso terapêutico , Síndrome Metabólica/prevenção & controle , PPAR gama/fisiologia , Gomas Vegetais/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Glicemia/análise , Calorimetria Indireta , Ceco/química , Ácidos Graxos Voláteis/análise , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Resistência à Insulina , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
6.
Diabetes ; 64(7): 2398-408, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25695945

RESUMO

Short-chain fatty acids (SCFAs) are the main products of dietary fiber fermentation and are believed to drive the fiber-related prevention of the metabolic syndrome. Here we show that dietary SCFAs induce a peroxisome proliferator-activated receptor-γ (PPARγ)-dependent switch from lipid synthesis to utilization. Dietary SCFA supplementation prevented and reversed high-fat diet-induced metabolic abnormalities in mice by decreasing PPARγ expression and activity. This increased the expression of mitochondrial uncoupling protein 2 and raised the AMP-to-ATP ratio, thereby stimulating oxidative metabolism in liver and adipose tissue via AMPK. The SCFA-induced reduction in body weight and stimulation of insulin sensitivity were absent in mice with adipose-specific disruption of PPARγ. Similarly, SCFA-induced reduction of hepatic steatosis was absent in mice lacking hepatic PPARγ. These results demonstrate that adipose and hepatic PPARγ are critical mediators of the beneficial effects of SCFAs on the metabolic syndrome, with clearly distinct and complementary roles. Our findings indicate that SCFAs may be used therapeutically as cheap and selective PPARγ modulators.


Assuntos
Tecido Adiposo/metabolismo , Ácidos Graxos Voláteis/administração & dosagem , Lipogênese , Obesidade/prevenção & controle , PPAR gama/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Dieta Hiperlipídica , Ácidos Graxos Voláteis/farmacologia , Resistência à Insulina , Canais Iônicos/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/fisiologia , Oxirredução , Proteína Desacopladora 2
7.
Mol Metab ; 4(12): 891-902, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26909306

RESUMO

OBJECTIVE: Farnesoid X receptor (FXR) plays a prominent role in hepatic lipid metabolism. The FXR gene encodes four proteins with structural differences suggestive of discrete biological functions about which little is known. METHODS: We expressed each FXR variant in primary hepatocytes and evaluated global gene expression, lipid profile, and metabolic fluxes. Gene delivery of FXR variants to Fxr(-/-) mouse liver was performed to evaluate their role in vivo. The effects of fasting and physical exercise on hepatic Fxr splicing were determined. RESULTS: We show that FXR splice isoforms regulate largely different gene sets and have specific effects on hepatic metabolism. FXRα2 (but not α1) activates a broad transcriptional program in hepatocytes conducive to lipolysis, fatty acid oxidation, and ketogenesis. Consequently, FXRα2 decreases cellular lipid accumulation and improves cellular insulin signaling to AKT. FXRα2 expression in Fxr(-/-) mouse liver activates a similar gene program and robustly decreases hepatic triglyceride levels. On the other hand, FXRα1 reduces hepatic triglyceride content to a lesser extent and does so through regulation of lipogenic gene expression. Bioenergetic cues, such as fasting and exercise, dynamically regulate Fxr splicing in mouse liver to increase Fxrα2 expression. CONCLUSIONS: Our results show that the main FXR variants in human liver (α1 and α2) reduce hepatic lipid accumulation through distinct mechanisms and to different degrees. Taking this novel mechanism into account could greatly improve the pharmacological targeting and therapeutic efficacy of FXR agonists.

8.
J Lipid Res ; 55(12): 2554-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25348863

RESUMO

Plant sterols and stanols are structurally similar to cholesterol and when added to the diet they are able to reduce serum total- and LDL-cholesterol concentrations. They also lower serum triglyceride concentrations in humans, particularly under conditions of hypertriglyceridemia. The aim of this study was to unravel the mechanism by which plant sterols and stanols reduce serum triglyceride concentrations in high-fat diet (HFD) fed mice. Male C57BL/6J mice were fed HFD for 4 weeks. Subsequently, they received HFD, HFD supplemented with 3.1% plant sterol ester (PSE) or HFD supplemented with 3.1% plant stanol ester (PSA) for another three weeks. Both PSE and PSA feeding resulted in decreased plasma triglyceride concentrations compared with HFD, while plasma cholesterol levels were unchanged. Interestingly, hepatic cholesterol levels were decreased in the PSE/PSA groups compared with HFD and no differences were found in hepatic triglyceride levels between groups. To investigate the mechanism underlying the hypotriglyceridemic effects from PSE/PSA feeding, we measured chylomicron and VLDL secretion. PSE and PSA feeding resulted in reduced VLDL secretion, while no differences were found between groups in chylomicron secretion. In conclusion, our data indicate that plasma triglyceride-lowering resulting from PSE and PSA feeding is associated with decreased hepatic VLDL secretion.


Assuntos
Suplementos Nutricionais , Ésteres/uso terapêutico , Hipertrigliceridemia/dietoterapia , Hipolipemiantes/uso terapêutico , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Fitosteróis/uso terapêutico , Sitosteroides/uso terapêutico , Animais , Colesterol/sangue , Colesterol/metabolismo , Quilomícrons/sangue , Quilomícrons/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ésteres/metabolismo , Hipertrigliceridemia/sangue , Hipertrigliceridemia/etiologia , Lipoproteínas VLDL/sangue , Masculino , Camundongos Endogâmicos C57BL , Fitosteróis/metabolismo , Período Pós-Prandial , Reprodutibilidade dos Testes , Sitosteroides/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo
9.
PLoS One ; 9(9): e107392, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25203112

RESUMO

Studies with dietary supplementation of various types of fibers have shown beneficial effects on symptoms of the metabolic syndrome. Short-chain fatty acids (SCFAs), the main products of intestinal bacterial fermentation of dietary fiber, have been suggested to play a key role. Whether the concentration of SCFAs or their metabolism drives these beneficial effects is not yet clear. In this study we investigated the SCFA concentrations and in vivo host uptake fluxes in the absence or presence of the dietary fiber guar gum. C57Bl/6J mice were fed a high-fat diet supplemented with 0%, 5%, 7.5% or 10% of the fiber guar gum. To determine the effect on SCFA metabolism, 13C-labeled acetate, propionate or butyrate were infused into the cecum of mice for 6 h and the isotopic enrichment of cecal SCFAs was measured. The in vivo production, uptake and bacterial interconversion of acetate, propionate and butyrate were calculated by combining the data from the three infusion experiments in a single steady-state isotope model. Guar gum treatment decreased markers of the metabolic syndrome (body weight, adipose weight, triglycerides, glucose and insulin levels and HOMA-IR) in a dose-dependent manner. In addition, hepatic mRNA expression of genes involved in gluconeogenesis and fatty acid synthesis decreased dose-dependently by guar gum treatment. Cecal SCFA concentrations were increased compared to the control group, but no differences were observed between the different guar gum doses. Thus, no significant correlation was found between cecal SCFA concentrations and metabolic markers. In contrast, in vivo SCFA uptake fluxes by the host correlated linearly with metabolic markers. We argue that in vivo SCFA fluxes, and not concentrations, govern the protection from the metabolic syndrome by dietary fibers.


Assuntos
Biomarcadores/metabolismo , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Galactanos/metabolismo , Mananas/metabolismo , Síndrome Metabólica/metabolismo , Gomas Vegetais/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Ceco/metabolismo , Dieta Hiperlipídica/métodos , Suplementos Nutricionais , Insulina/sangue , Fígado/metabolismo , Masculino , Síndrome Metabólica/sangue , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/sangue
10.
Metabolism ; 61(1): 99-107, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21816446

RESUMO

Obesity and its associated conditions such as type 2 diabetes mellitus are major causes of morbidity and mortality. The iminosugar N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin (AMP-DNM) improves insulin sensitivity in rodent models of insulin resistance and type 2 diabetes mellitus. In the current study, we characterized the impact of AMP-DNM on substrate oxidation patterns, food intake, and body weight gain in obese mice. Eight ob/ob mice treated with 100 mg/(kg d) AMP-DNM mixed in the food and 8 control ob/ob mice were placed in metabolic cages during the first, third, and fifth week of the experiment for measurement of substrate oxidation rates, energy expenditure, activity, and food intake. Mice were killed after 6 weeks of treatment. Initiation of treatment with AMP-DNM resulted in a rapid increase in fat oxidation by 129% (P = .05), a decrease in carbohydrate oxidation by 35% (P = .01), and a reduction in food intake by approximately 26% (P < .01) compared with control mice. Treatment with AMP-DNM decreased hepatic triglyceride content by 66% (P < .01) and, in line with the elevated fat oxidation rates, increased hepatic carnitine palmitoyl transferase 1a expression. Treatment with AMP-DNM increased plasma levels of the appetite-regulating peptide YY compared with control mice. Treatment with AMP-DNM rapidly reduces food intake and increases fat oxidation, resulting in improvement of the obese phenotype. These features of AMP-DNM, together with its insulin-sensitizing capacity, make it an attractive candidate drug for the treatment of obesity and its associated metabolic derangements.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Adamantano/análogos & derivados , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , 1-Desoxinojirimicina/farmacologia , Adamantano/farmacologia , Tecido Adiposo/metabolismo , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/metabolismo , Grelina/metabolismo , Glucose/metabolismo , Imino Açúcares/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , Oxirredução , Peptídeo YY/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
11.
Am J Physiol Gastrointest Liver Physiol ; 295(1): G203-G208, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18511744

RESUMO

Biliary secretion is generally considered to be an obligate step in the pathway of excess cholesterol excretion from the body. We have recently shown that an alternative route exists. Direct transintestinal cholesterol efflux (TICE) contributes significantly to cholesterol removal in mice. Our aim was to investigate whether the activity of this novel pathway can be influenced by dietary factors. In addition, we studied the role of cholesterol acceptors at the luminal side of the enterocyte. Mice were fed a Western-type diet (0.25% wt/wt cholesterol; 16% wt/wt fat), a high-fat diet (no cholesterol; 24% wt/wt fat), or high-cholesterol diet (2% wt/wt), and TICE was measured by isolated intestinal perfusion. Bile salt-phospholipid mixtures served as cholesterol acceptor. Western-type and high-fat diet increased TICE by 50 and 100%, respectively. In contrast, the high-cholesterol diet did not influence TICE. Intestinal scavenger receptor class B type 1 (Sr-B1) mRNA and protein levels correlated with the rate of TICE. Unexpectedly, although confirming a role for Sr-B1, TICE was significantly increased in Sr-B1-deficient mice. Apart from the long-term effect of diets on TICE, acute effects by luminal cholesterol acceptors were also investigated. The phospholipid content of perfusate was the most important regulator of TICE; bile salt concentration or hydrophobicity of bile salts had little effect. In conclusion, TICE can be manipulated by dietary intervention. Specific dietary modifications might provide means to stimulate TICE and, thereby, to enhance total cholesterol turnover.


Assuntos
Colesterol/metabolismo , Mucosa Intestinal/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Animais , Bile/metabolismo , Ácidos e Sais Biliares/administração & dosagem , Ácidos e Sais Biliares/farmacologia , Colesterol na Dieta/administração & dosagem , Dieta , Gorduras na Dieta/farmacologia , Suplementos Nutricionais , Intestinos/efeitos dos fármacos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Fosfolipídeos/administração & dosagem , Fosfolipídeos/farmacologia , RNA Mensageiro/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA