Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am Nat ; 192(5): E163-E177, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30332587

RESUMO

Phenological mismatch-maladaptive changes in phenology resulting from altered timing of environmental cues-is an increasing concern in many ecological systems, yet its effects on disease are poorly characterized. American lobster (Homarus americanus) is declining at its southern geographic limit. Rising seawater temperatures are associated with seasonal outbreaks of epizootic shell disease (ESD), which peaks in prevalence in the fall. We used a 34-year mark-recapture data set to investigate relationships between temperature, molting phenology, and ESD in Long Island Sound, where temperatures are increasing at 0.4°C per decade. Our analyses support the hypothesis that phenological mismatch is linked to the epidemiology of ESD. Warming spring temperatures are correlated with earlier spring molting. Lobsters lose diseased cuticle by molting, and early molting increases the intermolt period in the summer, when disease prevalence is increasing to a fall peak. In juvenile and adult male lobsters, September ESD prevalence was correlated with early molting, while October ESD prevalence was correlated with summer seawater temperature. This suggests that temperature-induced molting phenology affects the timing of the onset of ESD, but later in the summer this signal is swamped by the stronger signal of summer temperatures, which we hypothesize are associated with an increased rate of new infections. October ESD prevalence was ∼80% in years with hot summers and ∼30% in years with cooler summers. Yearly survival of diseased lobsters is <50% that of healthy lobsters. Thus, population impacts of ESD are expected to increase with increasing seawater temperatures.


Assuntos
Muda , Nephropidae/fisiologia , Exoesqueleto/crescimento & desenvolvimento , Exoesqueleto/microbiologia , Exoesqueleto/patologia , Animais , Oceano Atlântico , Infecções Bacterianas/epidemiologia , Nephropidae/crescimento & desenvolvimento , Nephropidae/microbiologia , Estações do Ano , Temperatura
2.
Ecol Appl ; 27(7): 2116-2127, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28675580

RESUMO

Recent increases in emergent infectious diseases have raised concerns about the sustainability of some marine species. The complexity and expense of studying diseases in marine systems often dictate that conservation and management decisions are made without quantitative data on population-level impacts of disease. Mark-recapture is a powerful, underutilized, tool for calculating impacts of disease on population size and structure, even in the absence of etiological information. We applied logistic regression models to mark-recapture data to obtain estimates of disease-associated mortality rates in three commercially important marine species: snow crab (Chionoecetes opilio) in Newfoundland, Canada, that experience sporadic epizootics of bitter crab disease; striped bass (Morone saxatilis) in the Chesapeake Bay, USA, that experience chronic dermal and visceral mycobacteriosis; and American lobster (Homarus americanus) in the Southern New England stock, that experience chronic epizootic shell disease. All three diseases decreased survival of diseased hosts. Survival of diseased adult male crabs was 1% (0.003-0.022, 95% CI) that of uninfected crabs indicating nearly complete mortality of infected crabs in this life stage. Survival of moderately and severely diseased striped bass (which comprised 15% and 11% of the population, respectively) was 84% (70-100%, 95% CI), and 54% (42-68%, 95% CI) that of healthy striped bass. The disease-adjusted yearly natural mortality rate for striped bass was 0.29, nearly double the previously accepted value, which did not include disease. Survival of moderately and severely diseased lobsters was 30% (15-60%, 95% CI) that of healthy lobsters and survival of mildly diseased lobsters was 45% (27-75%, 95% CI) that of healthy lobsters. High disease mortality in ovigerous females may explain the poor recruitment and rapid declines observed in this population. Stock assessments should account for disease-related mortality when resource management options are evaluated.


Assuntos
Bass , Braquiúros/fisiologia , Doenças dos Peixes , Pesqueiros , Longevidade , Infecções por Mycobacterium/veterinária , Nephropidae/microbiologia , Animais , Fenômenos Fisiológicos Bacterianos , Braquiúros/microbiologia , Braquiúros/parasitologia , Connecticut , Dinoflagellida/fisiologia , Interações Hospedeiro-Parasita , Modelos Logísticos , Maryland , Mycobacterium/fisiologia , Infecções por Mycobacterium/microbiologia , Terra Nova e Labrador , Virginia
3.
Philos Trans R Soc Lond B Biol Sci ; 371(1689)2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26880840

RESUMO

To forecast marine disease outbreaks as oceans warm requires new environmental surveillance tools. We describe an iterative process for developing these tools that combines research, development and deployment for suitable systems. The first step is to identify candidate host-pathogen systems. The 24 candidate systems we identified include sponges, corals, oysters, crustaceans, sea stars, fishes and sea grasses (among others). To illustrate the other steps, we present a case study of epizootic shell disease (ESD) in the American lobster. Increasing prevalence of ESD is a contributing factor to lobster fishery collapse in southern New England (SNE), raising concerns that disease prevalence will increase in the northern Gulf of Maine under climate change. The lowest maximum bottom temperature associated with ESD prevalence in SNE is 12 °C. Our seasonal outlook for 2015 and long-term projections show bottom temperatures greater than or equal to 12 °C may occur in this and coming years in the coastal bays of Maine. The tools presented will allow managers to target efforts to monitor the effects of ESD on fishery sustainability and will be iteratively refined. The approach and case example highlight that temperature-based surveillance tools can inform research, monitoring and management of emerging and continuing marine disease threats.


Assuntos
Monitoramento Ambiental/métodos , Nephropidae/microbiologia , Animais , Oceano Atlântico , Mudança Climática , Conservação dos Recursos Naturais , Pesqueiros , Previsões , Interações Hospedeiro-Patógeno , Maine , Estações do Ano , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA