Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Adv ; 9(44): eadk3860, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922355

RESUMO

Imaging and identifying target signatures and biomedical markers in the ultraviolet (UV) spectrum is broadly important to medical imaging, military target tracking, remote sensing, and industrial automation. However, current silicon-based imaging sensors are fundamentally limited because of the rapid absorption and attenuation of UV light, hindering their ability to resolve UV spectral signatures. Here, we present a bioinspired imaging sensor capable of wavelength-resolved imaging in the UV range. Inspired by the UV-sensitive visual system of the Papilio xuthus butterfly, the sensor monolithically combines vertically stacked photodiodes and perovskite nanocrystals. This imaging design combines two complementary UV detection mechanisms: The nanocrystal layer converts a portion of UV signals into visible fluorescence, detected by the photodiode array, while the remaining UV light is detected by the top photodiode. Our label-free UV fluorescence imaging data from aromatic amino acids and cancer/normal cells enables real-time differentiation of these biomedical materials with 99% confidence.


Assuntos
Borboletas , Luz , Animais , Raios Ultravioleta , Óxidos , Imagem Óptica
2.
J Biomed Opt ; 28(9): 096003, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37736312

RESUMO

Significance: Holographic display technology is a promising area of research that can lead to significant advancements in cancer surgery. We present the benefits of combining bioinspired multispectral imaging technology with holographic goggles for fluorescence-guided cancer surgery. Through a series of experiments with 43D-printed phantoms, small animal models of cancer, and surgeries on canine patients with head and neck cancer, we showcase the advantages of this holistic approach. Aim: The aim of our study is to demonstrate the feasibility and potential benefits of utilizing holographic display for fluorescence-guided surgery through a series of experiments involving 3D-printed phantoms and canine patients with head and neck cancer. Approach: We explore the integration of a bioinspired camera with a mixed reality headset to project fluorescent images as holograms onto a see-through display, and we demonstrate the potential benefits of this technology through benchtop and in vivo animal studies. Results: Our complete imaging and holographic display system showcased improved delineation of fluorescent targets in phantoms compared with the 2D monitor display approach and easy integration into the veterinarian surgical workflow. Conclusions: Based on our findings, it is evident that our comprehensive approach, which combines a bioinspired multispectral imaging sensor with holographic goggles, holds promise in enhancing the presentation of fluorescent information to surgeons during intraoperative scenarios while minimizing disruptions.


Assuntos
Holografia , Cirurgiões , Cirurgia Assistida por Computador , Humanos , Animais , Cães , Imagens de Fantasmas , Corantes
3.
Opt Express ; 21(1): 1137-51, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23389007

RESUMO

Recent advancements in nanotechnology and nanofabrication have allowed for the emergence of the division-of-focal-plane (DoFP) polarization imaging sensors. These sensors capture polarization properties of the optical field at every imaging frame. However, the DoFP polarization imaging sensors suffer from large registration error as well as reduced spatial-resolution output. These drawbacks can be improved by applying proper image interpolation methods for the reconstruction of the polarization results. In this paper, we present a new gradient-based interpolation method for DoFP polarimeters. The performance of the proposed interpolation method is evaluated against several previously published interpolation methods by using visual examples and root mean square error (RMSE) comparison. We found that the proposed gradient-based interpolation method can achieve better visual results while maintaining a lower RMSE than other interpolation methods under various dynamic ranges of a scene ranging from dim to bright conditions.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Nanotecnologia/métodos , Óptica e Fotônica , Refratometria/métodos , Algoritmos , Animais , Diagnóstico por Imagem/métodos , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Luz , Modelos Estatísticos , Nanopartículas/química , Nephropidae , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA