Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; 123(10): 1117-1126, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32077406

RESUMO

The study of polyphenols' effects on health has been gaining attention lately. In addition to reacting with important enzymes, altering the cell metabolism, these substances can present either positive or negative metabolic alterations depending on their consumption levels. Naringenin, a citrus flavonoid, already presents diverse metabolic effects. The objective of this work was to evaluate the effect of maternal naringenin supplementation during pregnancy on the tricarboxylic acid cycle activity in offspring's cerebellum. Adult female Wistar rats were divided into two groups: (1) vehicle (1 ml/kg by oral administration (p.o.)) or (2) naringenin (50 mg/kg p.o.). The offspring were euthanised at 7th day of life, and the cerebellum was dissected to analyse citrate synthase, isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH) and malate dehydrogenase (MDH) activities. Molecular docking used SwissDock web server and FORECASTER Suite, and the proposed binding pose image was created on UCSF Chimera. Data were analysed by Student's t test. Naringenin supplementation during pregnancy significantly inhibited IDH, α-KGDH and MDH activities in offspring's cerebellum. A similar reduction was observed in vitro, using purified α-KGDH and MDH, subjected to pre-incubation with naringenin. Docking simulations demonstrated that naringenin possibly interacts with dehydrogenases in the substrate and cofactor binding sites, inhibiting their function. Naringenin administration during pregnancy may affect cerebellar development and must be evaluated with caution by pregnant women and their physicians.


Assuntos
Cerebelo/enzimologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Suplementos Nutricionais , Flavanonas/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna , Animais , Citrato (si)-Sintase/efeitos dos fármacos , Feminino , Isocitrato Desidrogenase/efeitos dos fármacos , Complexo Cetoglutarato Desidrogenase/efeitos dos fármacos , Malato Desidrogenase/efeitos dos fármacos , Simulação de Acoplamento Molecular , Gravidez , Ratos , Ratos Wistar
2.
Phytother Res ; 33(5): 1394-1403, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30868680

RESUMO

Obesity is a metabolic disorder associated with adverse health consequences that has increased worldwide at an epidemic rate. This has encouraged many people to utilize nonprescription herbal supplements for weight loss without knowledge of their safety or efficacy. However, mounting evidence has shown that some herbal supplements used for weight loss are associated with adverse effects. Guarana seed powder is a popular nonprescription dietary herb supplement marketed for weight loss, but no study has demonstrated its efficacy or safety when administered alone. Wistar rats were fed four different diets (low-fat diet and Western diet with or without guarana supplementation) for 18 weeks. Metabolic parameters, gut microbiota changes, and toxicity were then characterized. Guarana seed powder supplementation prevented weight gain, insulin resistance, and adipokine dysregulation induced by Western diet compared with the control diet. Guarana induced brown adipose tissue expansion, mitochondrial biogenesis, uncoupling protein-1 overexpression, AMPK activation, and minor changes in gut microbiota. Molecular docking suggested a direct activation of AMPK by four guarana compounds tested here. We propose that brown adipose tissue activation is one of the action mechanisms involved in guarana supplementation-induced weight loss and that direct AMPK activation may underlie this mechanism. In summary, guarana is an attractive potential therapeutic agent to treat obesity.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Resistência à Insulina , Paullinia/química , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental , Suplementos Nutricionais , Humanos , Masculino , Simulação de Acoplamento Molecular , Obesidade/metabolismo , Ratos , Ratos Wistar , Aumento de Peso , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA