RESUMO
Introduction: This study was conducted to assess the effects of dietary supplementation of coated sodium butyrate (CSB) on the growth performance, serum antioxidant, immune performance, and intestinal microbiota of laying ducks. Methods: A total of 120 48-week-old laying ducks were randomly divided into 2 treatment groups: the control group (group C fed a basal diet) and the CSB-treated group (group CSB fed the basal diet + 250 g/t of CSB). Each treatment consisted of 6 replicates, with 10 ducks per replicate, and the trial was conducted for 60 days. Results: Compared with the group C, the group CSB showed a significant increase in the laying rate (p<0.05) of the 53-56 week-old ducks. Additionally, the serum total antioxidant capacity, superoxide dismutase activity and immunoglobulin G level were significantly higher (p<0.05), while the serum malondialdehyde content and tumor necrosis factor (TNF)-a level were significantly lower (p<0.05) in the serum of the group CSB compared to the group C. Moreover, the expression of IL-1b and TNF-a in the spleen of the group CSB was significantly lower (p<0.05) compared to that of the group C. In addition, compared with the group C, the expression of Occludin in the ileum and the villus height in the jejunum were significantly higher in the group CSB (p<0.05). Furthermore, Chao1, Shannon, and Pielou-e indices were higher in the group CSB compared to the group C (p<0.05). The abundance of Bacteroidetes in the group CSB was lower than that in the group C (p<0.05), while the abundances of Firmicutes and Actinobacteria were higher in the group CSB compared to the group C (p<0.05). Conclusions: Our results suggest that the dietary supplementation of CSB can alleviate egg-laying stress in laying ducks by enhancing immunity and maintaining the intestinal health of the ducks.
Assuntos
Antioxidantes , Suplementos Nutricionais , Animais , Antioxidantes/farmacologia , Patos , Ácido Butírico/farmacologia , IntestinosRESUMO
The objective of this study was to investigate the effects of tributyrin supplementation on liver fat metabolism in broiler chickens. Two hundred and forty broilers were randomly allocated into two experimental groups (6 replicates per treatment; 20 chickens in each replicate): the control group (CN), which received a basal diet, and the tributyrin group (TB), which received a basal diet supplemented with 1 g/kg of tributyrin. The experimental period lasted 37 days. The results showed that in the liver, broilers supplemented with tributyrin had higher content of high-density lipoprotein cholesterol (HDL-C) (p < 0.05). Liver hepatic lipase (HL), lipoprotein lipase (LPL) and total lipid (TL) activity were significantly lower than in the TB group than that in the NC group. Meanwhile, the diet supplemented with tributyrin had more lipid droplets than the NC group, whereas the TB and NC groups showed no histological abnormalities in the liver. Furthermore, the mRNA expression levels of peroxisome proliferators-activated receptor α (PPARα), proliferators-activated receptor γ (PPARγ), fatty acid synthase (FAS), LPL and adipose triglyceride lipase (ATGL) in the liver were significantly upregulated in the TB group (p < 0.05), while those of the long-chain acyl-CoA-synthetase 1 (ACSL1) mRNA between the TB group and the NC group were not different (p > 0.05). These findings indicated that the diet supplemented with tributyrin could increase fat deposition appropriately by promoting fat synthesis without causing liver tissue damage, which demonstrated that tributyrin can be considered a valid feed additive for broiler chickens.
Assuntos
Galinhas , Metabolismo dos Lipídeos , Animais , Galinhas/genética , Galinhas/metabolismo , Triglicerídeos/farmacologia , Triglicerídeos/metabolismo , Suplementos Nutricionais , Fígado/metabolismo , RNA Mensageiro/metabolismo , Expressão GênicaRESUMO
Intracellular double-stranded RNA (dsRNA) is a chief sign of replication for many viruses. Pattern recognition receptors(PRRs) of the innate immune system detected the dsRNA and initiate the antiviral responses. Retinoic acid-inducible gene I (RIG-I), a member of PRRs, plays an essential regulatory role in dsRNA-induced signalling. In this study, the full-length complementary DNA (cDNA) of duck RIG-I (duRIG-I) was cloned using the reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of the cDNA ends (RACE). The cDNA of duRIG-I contained 97-bp 5'UTR, 141-bp 3'-UTR and 2802 bp complete open-reading frame (ORF) encoding 933 amino acids. Multiple sequence alignments showed that duRIG-I shared high similarity with RIG-I from other vertebrates. Quantitative real-time PCR (qRT-PCR) analysis revealed that duRIG-I mRNA was expressed in all tested tissues, with high levels in the liver, heart, spleen, kidney and thymus, while lower in the duodenum. duRIG-I could be induced by treatment with poly(I:C). Further, overexpression of duRIG-I significantly activated the transcription of poly(I:C)-induced IFN-b, IRF7, TRIF, Mx, STAT1 and STAT2 mRNA, and duRIG-I knockdown showed the opposite results. Overall, our results suggested that duRIG-I could be an important receptor for mimicking antiviral state in duck, which warrant further studies to show the possible mechanism.