Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
MAbs ; 11(6): 1149-1161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31161871

RESUMO

An anti-CD30 antibody-drug conjugate incorporating the antimitotic agent DM1 and a stable SMCC linker, anti-CD30-MCC-DM1, was generated as a new antitumor drug candidate for CD30-positive hematological malignancies. Here, the in vitro and in vivo pharmacologic activities of anti-CD30-MCC-DM1 (also known as F0002-ADC) were evaluated and compared with ADCETRIS (brentuximab vedotin). Pharmacokinetics (PK) and the safety profiles in cynomolgus monkeys were assessed. Anti-CD30-MCC-DM1 was effective in in vitro cell death assays using CD30-positive lymphoma cell lines. We studied the properties of anti-CD30-MCC-DM1, including binding, internalization, drug release and actions. Unlike ADCETRIS, anti-CD30-MCC-DM1 did not cause a bystander effect in this study. In vivo, anti-CD30-MCC-DM1 was found to be capable of inducing tumor regression in subcutaneous inoculation of Karpas 299 (anaplastic large cell lymphoma), HH (cutaneous T-cell lymphoma) and L428 (Hodgkin's disease) cell models. The half-lives of 4 mg/kg and 12 mg/kg anti-CD30-MCC-DM1 were about 5 days in cynomolgus monkeys, and the tolerated dose was 30 mg/kg in non-human primates, supporting the tolerance of anti-CD30-MCC-DM1 in humans. These results suggest that anti-CD30-MCC-DM1 presents efficacy, safety and PK profiles that support its use as a valuable treatment for CD30-positive hematological malignancies.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hematológicas , Imunoconjugados/farmacologia , Antígeno Ki-1/imunologia , Linfoma Anaplásico de Células Grandes , Animais , Antineoplásicos/imunologia , Brentuximab Vedotin/imunologia , Brentuximab Vedotin/farmacologia , Avaliação Pré-Clínica de Medicamentos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Imunoconjugados/imunologia , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/imunologia , Linfoma Anaplásico de Células Grandes/patologia , Macaca fascicularis , Camundongos , Camundongos SCID
2.
Oncotarget ; 8(17): 27820-27838, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28416740

RESUMO

Beneficial effects of the Chinese herbal medicine Qushi Huayu Decoction (QHD) were observed with non-alcoholic fatty liver disease (NAFLD) patients and animal models. The impact of QHD or its active components (geniposide and chlorogenic acid, GC) on NAFLD liver transcriptome and gut microbiota was examined with NAFLD rats. Increased expression for genes required for glutathione production and decreased expression for genes required for lipid synthesis was observed in NAFLD livers treated with QHD and GC. GC treatment decreased serum LPS, which could be explained by reduced mucosal damage in the colon of GC-treated rats. Further, our data suggest an increased abundance of Treg-inducing bacteria that stimulated the Treg activity in GC treated colon, which in turn down-regulated inflammatory signals, improved gut barrier function and consequently reduced hepatic exposure to microbial products. Our study suggests that QHD simultaneously enhanced the hepatic anti-oxidative mechanism, decreased hepatic lipid synthesis, and promoted the regulatory T cell inducing microbiota in the gut.


Assuntos
Ácido Clorogênico/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Iridoides/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Ácido Clorogênico/química , Ácido Clorogênico/uso terapêutico , Colo/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal/imunologia , Glutationa/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Iridoides/química , Iridoides/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular/métodos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Transcriptoma/efeitos dos fármacos
3.
Infect Immun ; 79(7): 2608-18, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21536797

RESUMO

The use of a recombinant bacterial vector vaccine is an attractive vaccination strategy to induce an immune response to a carried protective antigen. The superiorities of live bacterial vectors include mimicry of a natural infection, intrinsic adjuvant properties, and the potential for administration by mucosal routes. Escherichia coli is a simple and efficient vector system for production of exogenous proteins. In addition, many strains are nonpathogenic and avirulent, making it a good candidate for use in recombinant vaccine design. In this study, we screened 23 different iron-regulated promoters in an E. coli BL21(DE3) vector and found one, P(viuB), with characteristics suitable for our use. We fused P(viuB) with lysis gene E, establishing an in vivo inducible lysis circuit. The resulting in vivo lysis circuit was introduced into a strain also carrying an IPTG (isopropyl-ß-d-thiogalactopyranoside)-inducible P(T7)-controlled protein synthesis circuit, forming a novel E. coli-based protein delivery system. The recombinant E. coli produced a large amount of antigen in vitro and could deliver the antigen into zebrafish after vaccination via injection. The strain subsequently lysed in response to the iron-limiting signal in vivo, implementing antigen release and biological containment. The gapA gene, encoding the protective antigen GAPDH (glyceraldehyde-3-phosphate dehydrogenase) from the fish pathogen Aeromonas hydrophila LSA34, was introduced into the E. coli-based protein delivery system, and the resultant recombinant vector vaccine was evaluated in turbot (Scophtalmus maximus). Over 80% of the vaccinated fish survived challenge with A. hydrophila LSA34, suggesting that the E. coli-based antigen delivery system has great potential in bacterial vector vaccine applications.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas , Escherichia coli/genética , Escherichia coli/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/imunologia , Ferro/metabolismo , Aeromonas hydrophila/imunologia , Animais , Antígenos de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Bacteriólise , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Linguados/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/genética , Infecções por Bactérias Gram-Negativas/imunologia , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Isopropiltiogalactosídeo/metabolismo , Plasmídeos , Regiões Promotoras Genéticas , Transdução de Sinais , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Peixe-Zebra/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA