Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 109(4): 538-547, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32915522

RESUMO

Extracellular matrix (ECM) products have the potential to improve cellular attachment and promote tissue-specific development by mimicking the native cellular niche. In this study, the therapeutic efficacy of an ECM substratum produced by bone marrow stem cells (BM-MSCs) to promote bone regeneration in vitro and in vivo were evaluated. Fluorescence-activated cell sorting analysis and phenotypic expression were employed to characterize the in vitro BM-MSC response to bone marrow specific ECM (BM-ECM). BM-ECM encouraged cell proliferation and stemness maintenance. The efficacy of BM-ECM as an adjuvant in promoting bone regeneration was evaluated in an orthotopic, segmental critical-sized bone defect in the rat femur over 8 weeks. The groups evaluated were either untreated (negative control); packed with calcium phosphate granules or granules+BM-ECM free protein and stabilized by collagenous membrane. Bone regeneration in vivo was analyzed using microcomputed tomography and histology. in vivo results demonstrated improvements in mineralization, osteogenesis, and tissue infiltration (114 ± 15% increase) in the BM-ECM complex group from 4 to 8 weeks compared to mineral granules only (45 ± 21% increase). Histological observations suggested direct apposition of early bone after 4 weeks and mineral consolidation after 8 weeks implantation for the group supplemented with BM-ECM. Significant osteoid formation and greater functional bone formation (polar moment of inertia was 71 ± 0.2 mm4 with BM-ECM supplementation compared to 48 ± 0.2 mm4 in untreated defects) validated in vivo indicated support of osteoconductivity and increased defect site cellularity. In conclusion, these results suggest that BM-ECM free protein is potentially a therapeutic supplement for stemness maintenance and sustaining osteogenesis.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Proteínas da Matriz Extracelular/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Regeneração Óssea/fisiologia , Calcificação Fisiológica/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Colágeno/uso terapêutico , Fêmur/diagnóstico por imagem , Fêmur/lesões , Fêmur/fisiologia , Técnicas In Vitro , Teste de Materiais , Especificidade de Órgãos , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
2.
Laryngoscope ; 131(9): 1958-1966, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33125169

RESUMO

OBJECTIVES/HYPOTHESIS: Novel laryngotracheal wound coverage devices are limited by complex anatomy, smooth surfaces, and dynamic pressure changes and airflow during breathing. We hypothesize that a bioinspired mucoadhesive patch mimicking how geckos climb smooth surfaces will permit sutureless wound coverage and also allow drug delivery. STUDY DESIGN: ex-vivo. METHODS: Polycaprolactone (PCL) fibers were electrospun onto a substrate and polyethylene glycol (PEG) - acrylate flocks in varying densities were deposited to create a composite patch. Sample topography was assessed with laser profilometry, material stiffness with biaxial mechanical testing, and mucoadhesive testing determined cohesive material failure on porcine tracheal tissue. Degradation rate was measured over 21 days in vitro along with dexamethasone drug release profiles. Material handleability was evaluated via suture retention and in cadaveric larynges. RESULTS: Increased flocking density was inversely related to cohesive failure in mucoadhesive testing, with a flocking density of PCL-PEG-2XFLK increasing failure strength to 6880 ± 1810 Pa compared to 3028 ± 791 in PCL-PEG-4XFLK density and 1182 ± 262 in PCL-PEG-6XFLK density. The PCL-PEG-2XFLK specimens had a higher failure strength than PCL alone (1404 ± 545 Pa) or PCL-PEG (2732 ± 840). Flocking progressively reduced composite stiffness from 1347 ± 15 to 763 ± 21 N/m. Degradation increased from 12% at 7 days to 16% after 10 days and 20% after 21 days. Cumulative dexamethasone release at 0.4 mg/cm2 concentration was maintained over 21 days. Optimized PCL-PEG-2XFLK density flocked patches were easy to maneuver endoscopically in laryngeal evaluation. CONCLUSIONS: This novel, sutureless, patch is a mucoadhesive platform suitable to laryngeal and tracheal anatomy with drug delivery capability. LEVEL OF EVIDENCE: NA Laryngoscope, 131:1958-1966, 2021.


Assuntos
Dexametasona/administração & dosagem , Glucocorticoides/administração & dosagem , Técnicas de Fechamento de Ferimentos/instrumentação , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis , Cadáver , Dexametasona/uso terapêutico , Sistemas de Liberação de Medicamentos/tendências , Avaliação Pré-Clínica de Medicamentos , Glucocorticoides/uso terapêutico , Humanos , Laringe/anatomia & histologia , Laringe/patologia , Preparações Farmacêuticas/administração & dosagem , Poliésteres/química , Polietilenoglicóis/química , Procedimentos Cirúrgicos sem Sutura/métodos , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Traqueia/anatomia & histologia , Traqueia/patologia , Cicatrização/fisiologia
3.
J Craniofac Surg ; 29(1): 116-123, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29135730

RESUMO

Severe traumatic injuries often result in critical size bone defects, which are unable to heal without treatment. Autologous grafting is the standard of care but requires additional surgeries for graft procurement. Amnion-derived multipotent progenitor cells release a secretome of biomolecules identified as integral to the process of bone regeneration and angiogenesis. This secretome is currently under development as a biotherapeutic. The efficacy of this secretome biotherapeutic was evaluated in vitro on the proliferation and migration of mesenchymal stem cells and osteoprogenitor cells as well as in vivo using a critical size rat calvarial defect model. The secretome biotherapeutic was loaded onto a collagen scaffold and placed into the defect, which was allowed to heal for 4 and 12 weeks. The secretome biotherapeutic enhanced the proliferation and migration of mesenchymal stem cells and proliferation of osteoprogenitor cells. Further, the secretome biotherapeutic improved new bone volume and connectivity by 12 weeks and significantly improved angiogenesis at 4 weeks and bone density at 4 and 12 weeks with no deleterious effects. The improvement in new bone volume, connectivity, and angiogenesis suggests that the secretome biotherapeutic has beneficial effects for bone healing and a higher dose of the secretome biotherapeutic may further improve regeneration.


Assuntos
Regeneração Óssea/fisiologia , Meios de Cultivo Condicionados/farmacologia , Fraturas Ósseas/terapia , Células-Tronco Mesenquimais/fisiologia , Crânio/lesões , Animais , Terapia Biológica/métodos , Modelos Animais de Doenças , Regeneração Tecidual Guiada/métodos , Ratos , Índices de Gravidade do Trauma , Resultado do Tratamento
4.
J Craniofac Surg ; 26(4): 1408-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26080207

RESUMO

Amniotic multipotential tissue matrix (AmnioMTM) is a membrane material derived from placental tissues and rich in growth factors that have been reported to have potential in healing bone. This study hypothesized that demineralized bone matrix (DBM) supplemented with AmnioMTM would accelerate healing and bone formation as compared with DBM alone in a critical size (10 mm) rat calvarial bone defect model. Five DBM grafts and 5 DBM supplemented with AmnioMTM grafts were implanted in a 10-mm critical sized defect in 10 rats (1 implant per rat). After 4 weeks, animals were euthanized and defects evaluated by microCT and histology. There were no statistical differences in microCT data for mineral density, percent bone fill, or bone surface to volume ratios between groups, though the bone surface to volume ratio for the amnio-supplemented group suggested increased osteoid activity as compared with the DBM alone group. Histological data also indicated active osteoid activity and induced bone formation in the center of defects implanted with AmnioMTM supplemented graft as compared with DBM graft alone suggesting some potential osteoinductive potential. However, there was no significant difference at the mean percent of newly mineralized bone in the DBM group defect as compared with the AmnioMTM supplemented graft material. These data suggest that while bone formation was not increased at this early time point, the increased osteoid activity and the induction of new bone in the middle of the defect by the AmnioMTM indicates that further study is needed to assess its potential benefit to bone healing and regeneration.


Assuntos
Materiais Biocompatíveis , Matriz Óssea/transplante , Substitutos Ósseos , Anormalidades Craniofaciais/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Cicatrização , Animais , Modelos Animais de Doenças , Ratos , Ratos Wistar , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA