Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 12(23)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067151

RESUMO

For the first time, based on the expression analysis of a wide range of pro- and anti-fibrotic, pro- and anti-inflammatory, and pro- and anti-apoptotic genes, key markers of endoplasmic reticulum stress (ER-stress), molecular mechanisms for the regulation of fibrosis, and accompanying negative processes caused by thioacetamide (TAA) injections and subsequent injections of selenium-containing nanoparticles and sorafenib have been proposed. We found that selenium nanoparticles of two types (doped with and without sorafenib) led to a significant decrease in almost all pro-fibrotic and pro-inflammatory genes. Sorafenib injections also reduced mRNA expression of pro-fibrotic and pro-inflammatory genes but less effectively than both types of nanoparticles. In addition, it was shown for the first time that TAA can be an inducer of ER-stress, most likely activating the IRE1α and PERK signaling pathways of the UPR, an inducer of apoptosis and pyroptosis. Sorafenib, despite a pronounced anti-apoptotic effect, still did not reduce the expression of caspase-3 and 12 or mitogen-activated kinase JNK1 to control values, which increases the risk of persistent apoptosis in liver cells. After injections of selenium-containing nanoparticles, the negative effects caused by TAA were leveled, causing an adaptive UPR signaling response through activation of the PERK signaling pathway. The advantages of selenium-containing nanoparticles over sorafenib, established in this work, once again emphasize the unique properties of this microelement and serve as an important factor for the further introduction of drugs based on it into clinical practice.


Assuntos
Proteínas Serina-Treonina Quinases , Selênio , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Proteínas Serina-Treonina Quinases/metabolismo , Selênio/farmacologia , Selênio/uso terapêutico , Tioacetamida/efeitos adversos , Endorribonucleases/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico
2.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569591

RESUMO

The cytoprotective properties of the trace element selenium, its nanoparticles, and selenium nanocomplexes with active compounds are shown using a number of models. To date, some molecular mechanisms of the protective effect of spherical selenium nanoparticles under the action of ischemia/reoxygenation on brain cells have been studied. Among other things, the dependence of the effectiveness of the neuroprotective properties of nanoselenium on its diameter, pathways, and efficiency of penetration into astrocytes was established. In general, most research in the field of nanomedicine is focused on the preparation and study of spherical nanoparticles of various origins due to the ease of their preparation; in addition, spherical nanoparticles have a large specific surface area. However, obtaining and studying the mechanisms of action of nanoparticles of a new form are of great interest since nanorods, having all the positive properties of spherical nanoparticles, will also have a number of advantages. Using the laser ablation method, we managed to obtain and characterize selenium nanorods (SeNrs) with a length of 1 µm and a diameter of 100 nm. Using fluorescence microscopy and inhibitory analysis, we were able to show that selenium nanorods cause the generation of Ca2+ signals in cortical astrocytes in an acute experiment through the mobilization of Ca2+ ions from the thapsigargin-sensitive pool of the endoplasmic reticulum. Chronic use of SeNrs leads to a change in the expression pattern of genes encoding proteins that regulate cell fate and protect astrocytes from ischemia-like conditions and reoxygenation through the inhibition of a global increase in the concentration of cytosolic calcium ([Ca2+]i). An important component of the cytoprotective effect of SeNrs during ischemia/reoxygenation is the induction of reactive A2-type astrogliosis in astrocytes, leading to an increase in both baseline and ischemia/reoxygenation-induced phosphoinositide 3-kinase (PI3K) activity and suppression of necrosis and apoptosis. The key components of this cytoprotective action of SeNrs are the actin-dependent process of endocytosis of nanoparticles into cells and activation of the Ca2+ signaling system of astrocytes.


Assuntos
Nanotubos , Selênio , Humanos , Selênio/farmacologia , Selênio/metabolismo , Projetos Piloto , Astrócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Isquemia/metabolismo , Células Cultivadas
3.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768736

RESUMO

Despite the fact that sorafenib is recommended for the treatment of oncological diseases of the liver, kidneys, and thyroid gland, and recently it has been used for combination therapy of brain cancer of various genesis, there are still significant problems for its widespread and effective use. Among these problems, the presence of the blood-brain barrier of the brain and the need to use high doses of sorafenib, the existence of mechanisms for the redistribution of sorafenib and its release in the brain tissue, as well as the high resistance of gliomas and glioblastomas to therapy should be considered the main ones. Therefore, there is a need to create new methods for delivering sorafenib to brain tumors, enhancing the therapeutic potential of sorafenib and reducing the cytotoxic effects of active compounds on the healthy environment of tumors, and ideally, increasing the survival of healthy cells during therapy. Using vitality tests, fluorescence microscopy, and molecular biology methods, we showed that the selenium-sorafenib (SeSo) nanocomplex, at relatively low concentrations, is able to bypass the mechanisms of glioblastoma cell chemoresistance and to induce apoptosis through Ca2+-dependent induction of endoplasmic reticulum stress, changes in the expression of selenoproteins and selenium-containing proteins, as well as key kinases-regulators of oncogenicity and cell death. Selenium nanoparticles (SeNPs) also have a high anticancer efficacy in glioblastomas, but are less selective, since SeSo in cortical astrocytes causes a more pronounced activation of the cytoprotective pathways.


Assuntos
Antineoplásicos , Glioblastoma , Selênio , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Glioblastoma/metabolismo , Selênio/uso terapêutico , Astrócitos/metabolismo , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Apoptose
4.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362436

RESUMO

This study aimed to discover the immunomodulatory effect of selenium nanoparticles (SeNPs) on the functional state of neutrophils in vivo. Intraperitoneal injections of SeNPs (size 100 nm) 2.5 mg/kg/daily to BALB/c mice for a duration of 7-28 days led to the development of an inflammatory reaction, which was registered by a significant increase in the number of neutrophils released from the peritoneal cavity, as well as their activated state, without additional effects. At the same time, subcutaneous injections of the same SeNPs preparations at concentrations of 0.1, 0.5, and 2.5 mg/kg, on the contrary, modulated the functional state of neutrophils depending on the concentration and duration of SeNPs administration. With the use of fluorescence spectroscopy, chemiluminescence, biochemical methods, and PCR analysis, it was found that subcutaneous administration of SeNPs (0.1, 0.5, and 2.5 mg/kg) to mice for a short period of time (7-14 days) leads to modification of important neutrophil functions (adhesion, the number of migrating cells into the peritoneal cell cavity, ROS production, and NET formation). The obtained results indicated the immunostimulatory and antioxidant effects of SeNPs in vivo during short-term administration, while the most pronounced immunomodulatory effects of SeNPs were observed with the introduction of a low concentration of SeNPs (0.1 mg/kg). Increase in the administration time of SeNPs (0.1 mg/kg or 2.5 mg/kg) up to 28 days led to a decrease in the adhesive abilities of neutrophils and suppression of the expression of mRNA of adhesive molecules, as well as proteins involved in the generation of ROS, with the exception of NOX2; there was a tendency to suppress gene expression pro-inflammatory factors, which indicates the possible manifestation of immunosuppressive and anti-inflammatory effects of SeNPs during their long-term administration. Changes in the expression of selenoproteins also had features depending on the concentration and duration of the administered SeNPs. Selenoprotein P, selenoprotein M, selenoprotein S, selenoprotein K, and selenoprotein T were the most sensitive to the introduction of SeNPs into the mouse organism, which indicates their participation in maintaining the functional status of neutrophils, and possibly mediated the immunomodulatory effect of SeNPs.


Assuntos
Nanopartículas , Selênio , Camundongos , Animais , Selênio/farmacologia , Selênio/química , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Camundongos Endogâmicos BALB C
5.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806466

RESUMO

It is known that selenium nanoparticles (SeNPs) obtained on their basis have a pleiotropic effect, inducing the process of apoptosis in tumor cells, on the one hand, and protecting healthy tissue cells from death under stress, on the other hand. It has been established that SeNPs protect brain cells from ischemia/reoxygenation through activation of the Ca2+ signaling system of astrocytes and reactive astrogliosis. At the same time, for a number of particles, the limitations of their use, associated with their size, are shown. The use of nanoparticles with a diameter of less than 10 nm leads to their short life-time in the bloodstream and rapid removal by the liver. Nanoparticles larger than 200 nm activate the complement system and are also quickly removed from the blood. The effects of different-sized SeNPs on brain cells have hardly been studied. Using the laser ablation method, we obtained SeNPs of various diameters: 50 nm, 100 nm, and 400 nm. Using fluorescence microscopy, vitality tests, PCR analysis, and immunocytochemistry, it was shown that all three types of the different-sized SeNPs have a cytoprotective effect on brain cortex cells under conditions of oxygen-glucose deprivation (OGD) and reoxygenation (R), suppressing the processes of necrotic death and inhibiting different efficiency processes of apoptosis. All of the studied SeNPs activate the Ca2+ signaling system of astrocytes, while simultaneously inducing different types of Ca2+ signals. SeNPs sized at 50 nm- induce Ca2+ responses of astrocytes in the form of a gradual irreversible increase in the concentration of cytosolic Ca2+ ([Ca2+]i), 100 nm-sized SeNPs induce stable Ca2+ oscillations without increasing the base level of [Ca2+]i, and 400 nm-sized SeNPs cause mixed patterns of Ca2+ signals. Such differences in the level of astrocyte Ca2+ signaling can explain the different cytoprotective efficacy of SeNPs, which is expressed in the expression of protective proteins and the activation of reactive astrogliosis. In terms of the cytoprotective efficiency under OGD/R conditions, different-sized SeNPs can be arranged in descending order: 100 nm-sized > 400 nm-sized > 50 nm-sized.


Assuntos
Nanopartículas , Selênio , Encéfalo , Gliose , Glucose , Humanos , Oxigênio , Selênio/farmacologia
6.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743086

RESUMO

Despite the use of sorafenib as one of the most effective drugs for the treatment of liver cancer, its significant limitations remain-poor solubility, the need to use high doses with the ensuing complications on healthy tissues and organs, and the formation of cell resistance to the drug. At the same time, there is more and more convincing evidence of the anticancer effect of selenium-containing compounds and nanoparticles. The aim of this work was to develop a selenium-sorafenib nanocomplex and study the molecular mechanisms of its anticancer effect on human hepatocyte carcinoma cells, where nanoselenium is not only a sorafenib transporter, but also an active compound. We have created a selenium-sorafenib nanocomplex based on selenium nanoparticles with size 100 nm. Using vitality tests, fluorescence microscopy, and PCR analysis, it was possible to show that selenium nanoparticles, both by themselves and doped with sorafenib, have a pronounced pro-apoptotic effect on HepG2 cells with an efficiency many times greater than that of sorafenib (So). "Naked" selenium nanoparticles (SeNPs) and the selenium-sorafenib nanocomplex (SeSo), already after 24 h of exposure, lead to the induction of the early stages of apoptosis with the transition to the later stages with an increase in the incubation time up to 48 h. At the same time, sorafenib, at the studied concentrations, began to exert a proapoptotic effect only after 48 h. Under the action of SeNPs and SeSo, both classical pathways of apoptosis induction and ER-stress-dependent pathways involving Ca2+ ions are activated. Thus, sorafenib did not cause the generation of Ca2+ signals by HepG2 cells, while SeNPs and SeSo led to the activation of the Ca2+ signaling system of cells. At the same time, the selenium-sorafenib nanocomplex turned out to be more effective in activating the Ca2+ signaling system of cells, inducing apoptosis and ER stress by an average of 20-25% compared to "naked" selenium nanoparticles. Our data on the mechanisms of action and the created nanocomplex are promising as a platform for the creation of highly selective and effective drugs with targeted delivery to tumors.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Nanopartículas , Selênio , Antineoplásicos/farmacologia , Apoptose , Células Hep G2 , Humanos , Selênio/farmacologia , Sorafenibe/farmacologia
7.
Nanomaterials (Basel) ; 11(9)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34578550

RESUMO

Formulation of promising anticancer herbal drug curcumin as a nanoscale-sized curcumin (nanocurcumin) improved its delivery to cells and organisms both in vitro and in vivo. We report on coupling nanocurcumin with upconversion nanoparticles (UCNPs) using Poly (lactic-co-glycolic Acid) (PLGA) to endow visualisation in the near-infrared transparency window. Nanocurcumin was prepared by solvent-antisolvent method. NaYF4:Yb,Er (UCNP1) and NaYF4:Yb,Tm (UCNP2) nanoparticles were synthesised by reverse microemulsion method and then functionalized it with PLGA to form UCNP-PLGA nanocarrier followed up by loading with the solvent-antisolvent process synthesized herbal nanocurcumin. The UCNP samples were extensively characterised with XRD, Raman, FTIR, DSC, TGA, UV-VIS-NIR spectrophotometer, Upconversion spectrofluorometer, HRSEM, EDAX and Zeta Potential analyses. UCNP1-PLGA-nanocurcumin exhibited emission at 520, 540, 660 nm and UCNP2-PLGA-nanocurmin showed emission at 480 and 800 nm spectral bands. UCNP-PLGA-nanocurcumin incubated with rat glioblastoma cells demonstrated moderate cytotoxicity, 60-80% cell viability at 0.12-0.02 mg/mL marginally suitable for therapeutic applications. The cytotoxicity of UCNPs evaluated in tumour spheroids models confirmed UCNP-PLGA-nanocurcumin therapeutic potential. As-synthesised curcumin-loaded nanocomplexes were administered in tumour-bearing laboratory animals (Lewis lung cancer model) and showed adequate contrast to enable in vivo and ex vivo study of UCNP-PLGA-nanocurcumin bio distribution in organs, with dominant distribution in the liver and lungs. Our studies demonstrate promise of nanocurcumin-loaded upconversion nanoparticles for theranostics applications.

8.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360564

RESUMO

In recent decades, studies on the functional features of Se nanoparticles (SeNP) have gained great popularity due to their high biocompatibility, stability, and pronounced selectivity. A large number of works prove the anticarcinogenic effect of SeNP. In this work, the molecular mechanisms regulating the cytotoxic effects of SeNP, obtained by laser ablation, were studied by the example of four human cancer cell lines: A-172 (glioblastoma), Caco-2, (colorectal adenocarcinoma), DU-145 (prostate carcinoma), MCF-7 (breast adenocarcinoma). It was found that SeNP had different concentration-dependent effects on cancer cells of the four studied human lines. SeNP at concentrations of less than 1 µg/mL had no cytotoxic effect on the studied cancer cells, with the exception of the A-172 cell line, for which 0.5 µg/mL SeNP was the minimum concentration affecting its metabolic activity. It was shown that SeNP concentration-dependently caused cancer cell apoptosis, but not necrosis. In addition, it was found that SeNP enhanced the expression of pro-apoptotic genes in almost all cancer cell lines, with the exception of Caco-2 and activated various pathways of adaptive and pro-apoptotic signaling pathways of UPR. Different effects of SeNP on the expression of ER-resident selenoproteins and selenium-containing glutathione peroxidases and thioredoxin reductases, depending on the cell line, were established. In addition, SeNP triggered Ca2+ signals in all investigated cancer cell lines. Different sensitivity of cancer cell lines to SeNP can determine the induction of the process of apoptosis in them through regulation of the Ca2+ signaling system, mechanisms of ER stress, and activation of various expression patterns of genes encoding pro-apoptotic proteins.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose , Citotoxinas/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Selênio/química , Antineoplásicos/química , Citotoxinas/química , Humanos , Nanopartículas/química , Transdução de Sinais , Células Tumorais Cultivadas
9.
Chem Biol Interact ; 299: 8-14, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496736

RESUMO

Bedaquiline (BDQ) is a new drug from the family of diarylquinolines, which has a potent bactericidal activity against Mycobacterium tuberculosis. This paper has examined the interaction of BDQ with model membranes (liposomes and BLM) and rat erythrocytes. It was shown that BDQ (1-10 mol%) changed the thermotropic phase behavior of DMPC liposomes, leading to the lateral phase separation in the lipid bilayer and the formation of membrane microdomains. BDQ (10-50 µM) was also demonstrated to cause permeabilization of lecithin liposomes loaded with the fluorescent dye sulforhodamine B. At the same time, it did not alter the ionic conductivity of BLM. A dynamic light scattering study showed that BDQ led to the emergence of two populations of light-scattering particles in the suspension of lecithin liposomes, suggesting that an aggregation of the vesicles took place. In rat erythrocytes, BDQ was found to induce changes in their size and shape, as well as aggregation and lysis of the cells.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Deformação Eritrocítica/efeitos dos fármacos , Lipossomos/metabolismo , Animais , Células Cultivadas , Difusão Dinâmica da Luz , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Lecitinas/química , Lipossomos/química , Masculino , Ratos , Ratos Wistar , Rodaminas/química , Rodaminas/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA