Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Neural Syst ; 19(4): 227-40, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19731397

RESUMO

This paper presents a new methodology for automatically learning an optimal neurostimulation strategy for the treatment of epilepsy. The technical challenge is to automatically modulate neurostimulation parameters, as a function of the observed EEG signal, so as to minimize the frequency and duration of seizures. The methodology leverages recent techniques from the machine learning literature, in particular the reinforcement learning paradigm, to formalize this optimization problem. We present an algorithm which is able to automatically learn an adaptive neurostimulation strategy directly from labeled training data acquired from animal brain tissues. Our results suggest that this methodology can be used to automatically find a stimulation strategy which effectively reduces the incidence of seizures, while also minimizing the amount of stimulation applied. This work highlights the crucial role that modern machine learning techniques can play in the optimization of treatment strategies for patients with chronic disorders such as epilepsy.


Assuntos
Terapia por Estimulação Elétrica/métodos , Epilepsia/terapia , Aprendizagem/fisiologia , Reforço Psicológico , 4-Aminopiridina/farmacologia , Algoritmos , Animais , Biofísica , Modelos Animais de Doenças , Eletroencefalografia/métodos , Córtex Entorrinal/fisiopatologia , Epilepsia/induzido quimicamente , Epilepsia/patologia , Técnicas In Vitro , Masculino , Sistemas Homem-Máquina , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA