Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sports Sci Med ; 21(2): 287-297, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35719228

RESUMO

Knee extension and hip flexion range of motion (ROM) and functional performance of the hamstrings are of great importance in many sports. The aim of this study was to investigate if static stretching (SS) or vibration foam rolling (VFR) induce greater changes in ROM, functional performance, and stiffness of the hamstring muscles. Twenty-five male volunteers were tested on two appointments and were randomly assigned either to a 2 min bout of SS or VFR. ROM, counter movement jump (CMJ) height, maximum voluntary isometric contraction (MVIC) peak torque, passive resistive torque (PRT), and shear modulus of semitendinosus (ST), semimembranosus (SM), and biceps femoris (BFlh), were assessed before and after the intervention. In both groups ROM increased (SS = 7.7%, P < 0.01; VFR = 8.8%, P < 0.01). The MVIC values decreased after SS (-5.1%, P < 0.01) only. Shear modulus of the ST changed for -6.7% in both groups (VFR: P < 0.01; SS: P < 0.01). Shear modulus decreased in SM after VFR (-6.5%; P = 0.03) and no changes were observed in the BFlh in any group (VFR = -1%; SS = -2.9%). PRT and CMJ values did not change following any interventions. Our findings suggest that VFR might be a favorable warm-up routine if the goal is to acutely increase ROM without compromising functional performance.


Assuntos
Músculos Isquiossurais , Exercícios de Alongamento Muscular , Músculos Isquiossurais/fisiologia , Humanos , Masculino , Amplitude de Movimento Articular/fisiologia , Torque , Vibração
2.
Eur J Appl Physiol ; 121(5): 1461-1471, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33638016

RESUMO

PURPOSE: The purpose of the study was to investigate the effects of using a vibration foam roll (VFR) or a non-vibration foam roll (NVFR) on maximum voluntary isometric contraction peak torque (MVIC), range of motion (ROM), passive resistive torque (PRT), and shear modulus. METHODS: Twenty-one male volunteers visited the laboratory on two separate days and were randomly assigned to either a VFR group or a NVFR group. Both interventions were performed for 3 × 1 min each. Before and after each intervention, passive resistive torque and maximum voluntary isometric contraction peak torque of the leg extensors were assessed with a dynamometer. Hip extension ROM was assessed using a modified Thomas test with 3D-motion caption. Muscle shear modulus of the vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) was assessed with shear wave elastography (SWE). RESULTS: In both groups (VFR, NVFR) we observed an increase in MVIC peak torque (+ 14.2 Nm, + 8.6 Nm) and a decrease in shear modulus of the RF (- 7.2 kPa, - 4.7 kPa). However, an increase in hip extension ROM (3.3°) was only observed in the VFR group. There was no change in PRT and shear modulus of the VL and VM, in both the VFR group and the NVFR group. Our findings demonstrate a muscle-specific acute decrease in passive RF stiffness after VFR and NVFR, with an effect on joint flexibility found only after VFR. CONCLUSION: The findings of this study suggest that VFR might be a more efficient approach to maximize performance in sports with flexibility demands.


Assuntos
Contração Isométrica/fisiologia , Exercícios de Alongamento Muscular/fisiologia , Músculo Quadríceps/fisiologia , Vibração , Adulto , Fenômenos Biomecânicos , Módulo de Elasticidade , Técnicas de Imagem por Elasticidade , Voluntários Saudáveis , Humanos , Imageamento Tridimensional , Masculino , Amplitude de Movimento Articular/fisiologia , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA