Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 258: 15-32, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155265

RESUMO

It is now accepted that vasopressin, through V1A/V1B receptors, centrally regulates cognitive functions such as memory, affiliation, stress, fear and depression. However, the respective roles of these receptor isoforms and their contribution to stress-related pathologies remain uncertain. The development of new therapeutic treatments requires a precise knowledge of the distribution of these receptors within the brain, which has been so far hampered by the lack of selective V1B markers. In the present study, we have determined the pharmacological properties of three new potent rat V1B fluorescent ligands and demonstrated that they constitute valuable tools for simultaneous visualization and activation of native V1B receptors in living rat brain tissue. Thus, d[Leu4,Lys-Alexa 647)8]VP (analogue 3), the compound with the best affinity-selectivity/fluorescence ratio for the V1B receptor emerged as the most promising. The rat brain regions most concerned by stress such as hippocampus, olfactory bulbs, cortex and amygdala display the highest V1B fluorescent labelling with analogue 3. In the hippocampus CA2, V1B receptors are located on glutamatergic, not GABAergic neurones, and are absent from astrocytes. Using AVP-EGFP rats, we demonstrate the presence of V1B autoreceptors on AVP-secreting neurones not only in the hypothalamus, but also sparsely in the hippocampus. Finally, using both electrophysiology and visualization of ERK phosphorylation, we show analogue 3-induced activation of the V1B receptor in situ. This will help to analyse expression and functionality of V1B receptors in the brain and contribute to further explore the AVPergic circuitry in normal and pathological conditions.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Corantes Fluorescentes/metabolismo , Receptores de Vasopressinas/metabolismo , Animais , Arginina Vasopressina/metabolismo , Astrócitos/metabolismo , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Hipotálamo/metabolismo , Ligantes , Masculino , Neuroanatomia , Neurônios/metabolismo , Hipófise/citologia , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Coloração e Rotulagem , Vasopressinas/metabolismo
2.
Endocrinology ; 149(9): 4279-88, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18483147

RESUMO

We have previously shown that hyperosmotic stimulation of adult Wistar rats induces local angiogenesis within hypothalamic magnocellular nuclei, in relation to the secretion of vascular endothelial growth factor (VEGF) by the magnocellular neurons. The present study aimed at understanding how osmotic stimulus relates to increased VEGF secretion. We first demonstrate a correlation between increased VEGF secretion and local hypoxia. Osmotic stimulation is known to stimulate the metabolic activity of hypothalamic magnocellular neurons producing arginine vasopressin (AVP) and to increase the secretion of AVP, both by axon terminals into the circulation and by dendrites into the extracellular space. In AVP-deficient Brattleboro rats, the dramatic activation of magnocellular hypothalamic neurons failed to induce hypoxia, VEGF expression, or angiogenesis, suggesting a major role of hypothalamic AVP. A possible involvement of dendritic AVP release is supported by the findings that 1) hypoxia and angiogenesis were not observed in non osmotically stimulated Wistar rats in which circulating AVP was increased by the prolonged infusion of exogenous AVP, 2) contractile arterioles afferent to the magnocellular nuclei were strongly constricted by the perivascular application of AVP via V1a receptors (V1a-R) stimulation, and 3) after the intracerebral or ip administrations of selective V1a-R antagonists to osmotically stimulated rats, hypothalamic hypoxia and angiogenesis were or were not inhibited, respectively. Together, these data strongly suggest that the angiogenesis induced by osmotic stimulation relates to tissue hypoxia resulting from the constriction of local arterioles, via the stimulation of perivascular V1a-R by AVP locally released from dendrites.


Assuntos
Arginina Vasopressina/fisiologia , Dendritos/metabolismo , Hipotálamo/irrigação sanguínea , Hipóxia Encefálica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Vasoconstrição/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos , Arginina Vasopressina/antagonistas & inibidores , Arginina Vasopressina/metabolismo , Arginina Vasopressina/farmacologia , Dendritos/efeitos dos fármacos , Hipotálamo/metabolismo , Hipóxia Encefálica/metabolismo , Injeções Intraventriculares , Masculino , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Osmose , Ratos , Ratos Brattleboro , Ratos Long-Evans , Ratos Wistar , Núcleo Supraóptico/efeitos dos fármacos , Núcleo Supraóptico/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vasoconstrição/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
3.
J Pharmacol Exp Ther ; 300(3): 1122-30, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11861823

RESUMO

(2S,4R)-1-[5-Chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide (SSR149415), the first selective, nonpeptide vasopressin V1b receptor antagonist yet described, has been characterized in vitro and in vivo. SSR149415 showed competitive nanomolar affinity for animal and human V1b receptors and exhibited much lower affinity for rat and human V1a, V2, and oxytocin receptors. Moreover, this compound did not interact with a large number of other receptors, enzymes, or ion channels. In vitro, SSR149415 behaved as a full antagonist and potently inhibited arginine vasopressin (AVP)-induced Ca2+ increase in Chinese hamster ovary cells expressing rat or human V1b receptors. The in vivo activity of SSR149415 has been studied in several models of elevated corticotropin secretion in conscious rats. SSR149415 inhibited exogenous AVP-induced increase in plasma corticotropin, from 3 mg/kg i.p. and 10 mg/kg p.o. upwards. Similarly, this compound antagonized AVP-potentiated corticotropin release provoked by exogenous corticoliberin at 3 mg/kg p.o. The effect lasted for more than 4 h at 10 mg/kg p.o. showing a long-lasting oral effect. SSR149415 (10 mg/kg p.o.) also blocked corticotropin secretion induced by endogenous AVP increase subsequent to body water loss. Moreover, 10 mg/kg i.p SSR149415 inhibited plasma corticotropin elevation after restraint-stress in rats by 50%. In the four-plate test, a mouse model of anxiety, SSR149415 (3 mg/kg p.o. upwards) displayed anxiolytic-like activity after acute and 7-day repeated administrations. Thus, SSR149415 is a potent, selective, and orally active V1b receptor antagonist. It represents a unique tool for exploring the functional role of V1b receptors and deserves to be clinically investigated in the field of stress and anxiety.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos , Hormônio Adrenocorticotrópico/metabolismo , Animais , Ansiolíticos/farmacologia , Arginina Vasopressina/farmacologia , Células CHO , Bovinos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Cricetinae , Desidratação/metabolismo , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Técnicas In Vitro , Cinética , Masculino , Morfolinas/antagonistas & inibidores , Morfolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Compostos de Espiro/antagonistas & inibidores , Compostos de Espiro/farmacologia , Estresse Psicológico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA