Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 62: 104692, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31669395

RESUMO

There is a growing recognition that application of mechanistic approaches to understand cross-species shared molecular targets and pathway conservation in the context of hazard characterization, provide significant opportunities in risk assessment (RA) for both human health and environmental safety. Specifically, it has been recognized that a more comprehensive and reliable understanding of similarities and differences in biological pathways across a variety of species will better enable cross-species extrapolation of potential adverse toxicological effects. Ultimately, this would also advance the generation and use of mechanistic data for both human health and environmental RA. A workshop brought together representatives from industry, academia and government to discuss how to improve the use of existing data, and to generate new NAMs data to derive better mechanistic understanding between humans and environmentally-relevant species, ultimately resulting in holistic chemical safety decisions. Thanks to a thorough dialogue among all participants, key challenges, current gaps and research needs were identified, and potential solutions proposed. This discussion highlighted the common objective to progress toward more predictive, mechanistically based, data-driven and animal-free chemical safety assessments. Overall, the participants recognized that there is no single approach which would provide all the answers for bridging the gap between mechanism-based human health and environmental RA, but acknowledged we now have the incentive, tools and data availability to address this concept, maximizing the potential for improvements in both human health and environmental RA.


Assuntos
Meio Ambiente , Saúde Ambiental , Toxicologia/tendências , Animais , Segurança Química , Humanos , Medição de Risco/métodos , Especificidade da Espécie
2.
Nucleic Acids Res ; 46(D1): D930-D936, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29140522

RESUMO

Pharmaceuticals are designed to interact with specific molecular targets in humans and these targets generally have orthologs in other species. This provides opportunities for the drug discovery community to use alternative model species for drug development. It also means, however, there is potential for mode of action related effects in non-target wildlife species as many pharmaceuticals reach the environment through patient use and manufacturing wastes. Acquiring insight in drug target ortholog predictions across species and taxonomic groups has proven difficult because of the lack of an optimal strategy and because necessary information is spread across multiple and diverse sources and platforms. We introduce a new research platform tool, ECOdrug, that reliably connects drugs to their protein targets across divergent species. It harmonizes ortholog predictions from multiple sources via a simple user interface underpinning critical applications for a wide range of studies in pharmacology, ecotoxicology and comparative evolutionary biology. ECOdrug can be used to identify species with drug targets and identify drugs that interact with those targets. As such, it can be applied to support intelligent targeted drug safety testing by ensuring appropriate and relevant species are selected in ecological risk assessments. ECOdrug is freely accessible and available at: http://www.ecodrug.org.


Assuntos
Antineoplásicos/farmacologia , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/genética , RNA Neoplásico/genética , Sequência de Aminoácidos , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Conservação dos Recursos Naturais , Sequência Conservada , Coleta de Dados , Apresentação de Dados , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Peixes/genética , Previsões , Humanos , Invertebrados/genética , Mamíferos/genética , Proteínas de Neoplasias/química , Neoplasias/tratamento farmacológico , Medição de Risco , Especificidade da Espécie , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA