Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Plant Res ; 137(1): 37-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37917204

RESUMO

Geum japonicum (Rosaceae) has been widely used in China as a traditional herbal medicine due to its high economic and medicinal value. However, the appearance of Geum species is relatively similar, making identification difficult by conventional phenotypic methods, and the studies of genomics and species evolution are lacking. To better distinguish the medicinal varieties and fill this gap, we carried out relevant research on the chloroplast genome of G. japonicum. Results show a typical quadripartite structure of the chloroplast genome of G. japonicum with a length of 156,042 bp. There are totally 131 unique genes in the genome, including 87 protein-coding genes, 36 tRNA genes, and 8 rRNA genes, and there were also 87 SSRs identified and mostly mononucleotide Adenine-Thymine. We next compared the plastid genomes among four Geum species and obtained 14 hypervariable regions, including ndhF, psbE, trnG-UCC, ccsA, trnQ-UUG, rps16, psbK, trnL-UAA, ycf1, ndhD, atpA, petN, rps14, and trnK-UUU. Phylogenetic analysis revealed that G. japonicum is most closely related to Geum aleppicum, and possibly has some evolutionary relatedness with an ancient relic plant Taihangia rupestris. This research enriched the genome resources and provided fundamental insights for evolutionary studies and the phylogeny of Geum.


Assuntos
Genoma de Cloroplastos , Geum , Filogenia , Genoma de Cloroplastos/genética , Geum/genética , Genômica/métodos , Cloroplastos/genética
2.
Front Chem ; 11: 1203418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720716

RESUMO

Herba Gynostemma (Jiaogulan) is an herbaceous plant of the genus Gynostemma in the family Cucurbitaceae. Gynostemma longipes has lipid-lowering activity, thus, it is used as a medicinal material. However, its medicinal using parts have been recorded as whole plants or aerial parts in different provincial quality standards; therefore, it is necessary to conduct a comprehensive compositional analysis of the different parts of G. longipes (rhizomes, stems, and leaves) used in traditional medicine. In this study, offline two-dimensional liquid chromatography-ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS) was used to analyze the different parts of G. longipes obtained from Shaanxi province, China. By combining the retention times, mass fragments, collision cross-section values, reference standards, and information concerning literature compounds, 396 components were identified from the three parts of the plant, including 94 groups of isomers, and 217 components were identified or tentatively identified as new compounds. In the rhizomes, leaves, and stems, 240, 220, and 168 compounds, respectively, were identified. Differential analysis of the compounds in the rhizomes and aerial parts was also carried out, and 36 differential components were identified, of which 32 had higher contents in the rhizomes. Therefore, these findings indicate that the number of chemical components and the content of major differential components are higher in the rhizomes than the leaves and stems of G. longipes from the Maobaling Planting Base in Pingli county, Shaanxi province. Thus, the rhizomes of G. longipes are also an important part for medicinal use. These results will contribute to the establishment of quality control methods for G. longipes.

3.
Front Plant Sci ; 14: 1143745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324724

RESUMO

Introduction: Fine roots are the critical functional organs of plants to absorb water and nutrients from the soil environment, while the relation between fine root morphological characteristics and yield & quality has received less attention for medicinal plants. Methods: Therefore, we investigated the relationship between fine root morphological characteristics and biomass & gypenosides content. We explored the primary environmental drivers of fine root indicators for Gynostemma longipes from three provenances cultivated at two altitude habitats. Results: At the end of the growing season, compared with the low-altitude habitat, the underground biomass of G. longipes in the high-altitude habitat increased significantly by 200%~290% for all three provenances. The response of gypenosides content to different altitude habitats varied with provenance and plant organs. The biomass of G. longipes strongly depended on the fine root characteristic indicators (P < 0.001), fine root length density, and fine root surface area. Our results also showed that the harvest yield of G. longipes could be effectively increased by promoting the growth of fine roots per unit leaf weight (P < 0.001, R2 = 0.63). Both fine root length density and fine root surface area had strong positive correlations with soil nutrient factors (R2 > 0.55) and a strong negative correlation with soil pH (R2 > 0.48). In a word, the growth of G. longipes is strongly controlled by the fine root morphological characteristics through the response of fine roots to soil nutrient factors and pH. Discussion: Our findings will help to deepen the understanding of the root ecophysiological basis driven by soil factors for the growth and secondary metabolites formation of G. longipes and other medicinal plants under changing habitat conditions. In future research, we should investigate how environmental factors drive plant morphological characteristics (e.g., fine roots) to affect the growth & quality of medicinal plants over a longer time scale.

4.
J Pharm Biomed Anal ; 230: 115393, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062206

RESUMO

Gypenosides (Gps) are the major bioactive components in Gynostemma species. They include neutral Gps and acidic malonylgypenosides (MGps). MGps are abundant in Gynostemma species and can be transformed into corresponding Gps via extraction, concentration, and drying. If only the Gps were quantified and MGps were ignored, the quality of Gynostemma species would be underestimated. This study aimed to develop a sample preparation method involving demalonylation and ultrahigh-performance liquid chromatography-charged aerosol detector (UHPLC-CAD) analysis to determine the contents of gypenoside XLIX (Gp XLIX) and gypenoside A (Gp A). First, the optimized ultrasonic extraction method was established to extract G. longipes powder ultrasonically. Then, the extracted solution was put into a closed container (centrifuge tube) and heated in a water bath at 95 °C. Then, MGps were converted into corresponding Gps. The proposed preparation method was compared with the other three methods, including water bath reflux heating, alkali hydrolysis, and extraction of heated powder, and was shown to exhibit higher conversion and better convenience. Subsequently, an UHPLC-CAD method was established and validated. Gp XLIX and Gp A showed excellent linear correlations between 15.55 and 248.8 µg/mL and 24.10-385.5 µg/mL, respectively (R2 > 0.999). The limit of detection was 1.40 ng (Gp XLIX) and 2.41 ng (Gp A), and the limit of quantification was 7.77 ng and 14.46 ng, respectively. The relative standard deviation for precision, stability, and repeatability was 0.63-3.15%. The average recovery of Gp XLIX and Gp A was 98.97% and 98.23%, respectively. The established method was applied for determining Gp XLIX and Gp A contents in wild or cultivated G. longipes samples collected from the Qinba Mountains area. The contents of Gp XLIX and Gp A were 5.16-23.02 mg/g and 15.78-54.55 mg/g, respectively. Conclusively, the proposed sample preparation and analysis method could be used for the quality control and evaluation of G. longipes.


Assuntos
Gynostemma , Extratos Vegetais , Pós , Cromatografia Líquida , Água
5.
Heliyon ; 9(3): e14029, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911881

RESUMO

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

6.
Food Funct ; 14(6): 2710-2726, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36852499

RESUMO

Safflower (Carthamus tinctorius) has the efficacy for promoting blood circulation and preventing cardiovascular and Alzheimer's diseases and is thus a valuable medicinal and functional food plant. However, how to evaluate high-quality safflower is still a problem. To differentiate intraspecies ecotypes and illustrate the mechanisms of differential metabolites of C. tinctorius from different regions, this study combined the widely targeted metabolome, weighted network pharmacology, and molecular docking to filter bioactive compounds and predict the target preference. The results indicated that kaempferol is suitable as a secondary Q-marker to differentiate intraspecies ecotypes. In secondary metabolites, the average content of kaempferol and its derivates in C. tinctorius from Sichuan is three times that of other areas, which have the potential for the targeted medicine of CA2 and TNF. In volatile metabolites, isoaromadendrene epoxide has the potential as a specifically targeted medicine of RXRA. The change of the target preference could be the reason for the difference in drug efficacy among different varieties of C. tinctorius. It is reasonable that Sichuan was recognized as a high-quality ecotype producing region of C. tinctorius in China, which promotes blood circulation and removes blood stasis. This study provides an innovative method to differentiate intraspecies ecotypes and explore their target preference.


Assuntos
Carthamus tinctorius , Quempferóis , Ecótipo , Simulação de Acoplamento Molecular , Extratos Vegetais/metabolismo
7.
Sci Adv ; 9(5): eade5987, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36735778

RESUMO

Posttraumatic stress disorder (PTSD) is a highly prevalent and debilitating psychiatric disease often accompanied by severe defensive behaviors, preventing individuals from integrating into society. However, the neural mechanisms of defensiveness in PTSD remain largely unknown. Here, we identified that the higher-order thalamus, the posteromedial complex of the thalamus (PoM), was overactivated in a mouse model of PTSD, and suppressing PoM activity alleviated excessive defensive behaviors. Moreover, we found that diminished thalamic inhibition derived from the thalamic reticular nucleus was the major cause of thalamic hyperactivity in PTSD mice. Overloaded thalamic innervation to the downstream cortical area, frontal association cortex, drove abnormal defensiveness. Overall, our study revealed that the malfunction of the higher-order thalamus mediates defensive behaviors and highlighted the thalamocortical circuit as a potential target for treating PTSD-related overreactivity symptoms.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Camundongos , Animais , Tálamo/fisiologia , Modelos Animais de Doenças
8.
Front Plant Sci ; 13: 1034943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452098

RESUMO

Epimedium pubescens is a species of the family Berberidaceae in the basal eudicot lineage, and a main plant source for the traditional Chinese medicine "Herba Epimedii". The current study achieved a chromosome-level genome assembly of E. pubescens with the genome size of 3.34 Gb, and the genome guided discovery of a key prenyltransferase (PT) in E. pubescens. Our comparative genomic analyses confirmed the absence of Whole Genome Triplication (WGT-γ) event shared in core eudicots and further revealed the occurrence of an ancient Whole Genome Duplication (WGD) event approximately between 66 and 81 Million Years Ago (MYA). In addition, whole genome search approach was successfully applied to identify 19 potential flavonoid PT genes and an important flavonoid PT (EpPT8) was proven to be an enzyme for the biosynthesis of medicinal compounds, icaritin and its derivatives in E. pubescens. Therefore, our results not only provide a good reference genome to conduct further molecular biological studies in Epimedium genus, but also give important clues for synthetic biology and industrial production of related prenylated flavonoids in future.

9.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6020-6026, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36471925

RESUMO

Epimedii Folium is a well-known Chinese herbal medicine with the effect of nourishing kidney and strengthening Yang. Its main active ingredients are flavonoids. In this study, 60 samples of Epimedium sagittatum were collected for the determination of total flavonoids(TF) including the total amount of epimedin A, epimedin B, epimedin C, and icariin(abbreviated as ABCI) specified in the Chinese Pharmacopoeia as well as rhamnosylicariside Ⅱ and icariside Ⅱ. The calibration parameters of "first derivativemultiva-riate scattering correction in 1 900-650 cm~(-1) band(4-point smoothing)" and "first derivativestandard normal variable correction in 4 000-650 cm~(-1) full band(4-point smoothing)" were confirmed respectively. The quantitative model was established via Fourier infrared spectroscopy plus attenuated total reflection(FTIR-ATR) accessory combined with partial least squares(PLS) method and then used to predict the flavonoid content of 11 validation sets. The average prediction accuracy for ABCI in calibration set and validation set was 98.985% and 96.087%, respectively. The average prediction accuracy for TF in calibration set and validation set was 98.998% and 94.771%, respectively. These results indicated that FTIR-ATR combined with PLS model could be used for rapid prediction of flavonoid content in E. sagittatum, with the prediction accuracy above 94.7%. The establishment of this method provides a new solution for the detection of a large number of E. sagittatum samples.


Assuntos
Epimedium , Epimedium/química , Flavonoides/química , Folhas de Planta , Análise dos Mínimos Quadrados , Espectrofotometria Infravermelho
10.
Chin J Nat Med ; 20(9): 712-720, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36162956

RESUMO

Six new prenylated flavonoid glycosides, including four new furan-flavonoid glycosides wushepimedoside A-D (1-4) and two new prenyl flavonoid derivatives wushepimedoside E-F (5-6), and one know analog epimedkoreside B (7) were isolated from biotransformation products of the aerial parts of Epimedium wushanense. Their structures were elucidated according to comprehensive analysis of HR-MS and NMR spectroscopic data, and the absolute configurations were assigned using experimental and calculated electronic circular dichroism (ECD) data. The regulatory activity of compounds 1-7 on the production of testosterone in primary rat Leydig cells were investigated, and 4 and 5 exhibited testosterone production-promoting activities. Molecular docking analysis suggested that bioactive compounds 4 and 5 showed the stable binding with 3ß-HSD and 4 also had good affinity with Cyp17A1, which suggested that these compounds may regulate testosterone production through stimulating the expression of the above two key proteins.


Assuntos
Epimedium , Animais , Epimedium/química , Flavonoides/química , Furanos , Glicosídeos/química , Hidrólise , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Testosterona , beta-Glucosidase/metabolismo
11.
Synth Syst Biotechnol ; 7(4): 1095-1107, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35990929

RESUMO

Epimedium pubescens Maxim. is a well-known traditional Chinese medicinal herb with flavonol glycosides as the major pharmaceutically active compounds. UDP-glycosyltransferases (UGTs) are a group of enzymes responsible for the glycosylation of flavonoid glycosides. In this study, a genome-wide analysis was performed to identify UGT family genes in E. pubescens. As a result, a total of 339 putative UGT genes were identified, which represents the largest UGT gene family known thus far, implying a significant expansion of the UGT gene family in E. pubescens. All EpUGTs were unevenly distributed across six chromosomes, and they were classified into 17 major groups. The expression profiles showed that UGT genes were differentially expressed in roots, leaves, flowers, shoots and fruits. In particular, several EpUGTs were highly induced by high light intensity, which was consistent with the accumulation level of bioactive flavonoids in E. pubescens. Six UGT79 genes that were preferentially expressed in roots or leaves were successfully expressed in E. coli, and only the recombinant EpGT60 protein was found to be active toward 8-prenylkaempferol and icaritin to produce the key bioactive compounds baohuoside II and baohuoside I. The optimal temperature, pH, k m and V max were determined for the recombinant EpGT60 protein. In addition, expression of recombinant EpGT60 in E. coli cell culture led to successful production of baohuoside II when fed 8-prenylkaempferol. Our study provides a foundation for further functional characterization of UGT genes in E. pubescens and provides key candidate genes for bioengineering bioactive flavonoids in E. pubescens.

12.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3447-3451, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850795

RESUMO

In this study, 10 PA-type Perilla germplasms were selected to detect the content of two phenolic acids, i.e., rosmarinic acid(RA) and caffeic acid(CA), and six flavonoids, including scutellarin-7-O-diglucuronoside(SDG), luteolin-7-O-diglucuronoside(LDG), apigenin-7-O-diglucuronoside(ADG), scutellarin-7-O-glucuroside(SG), luteolin-7-O-glucuroside(LG), and apigenin-7-O-glucuroside(AG) in leaves, stems, and fruits. The total content of phenolic acids and flavonoids in leaves was 3.991-12.028 mg·g~(-1) and 12.309-25.071 mg·g~(-1), respectively, which was much higher than that in stems(0.586-2.015 mg·g~(-1) and 0.879-1.413 mg·g~(-1), respectively) and fruits(0.004-2.222 mg·g~(-1) and 0.651-1.936 mg·g~(-1), respectively). RA was detected in five fruit samples, and RA content between leaves and fruits showed a significant negative correlation in the other five samples. For flavonoids, only LG and LDG could be detected in stems, and SG and SDG were not detected in fruits, while other flavonoids were not detected in some samples. The content of total flavonoids and LG in leaves and fruits was significantly positively correlated, and the content of LG in stems and fruits was significantly positively correlated. In 10 stem samples, seven met the standard that the content of RA in the stem should be not less than 0.1% specified in the Chinese Pharmacopoeia(2020 edition). Only one fruit sample reached the standard of RA content in the fruit not less than 0.25% specified in the Chinese Pharmacopoeia.


Assuntos
Flavonoides , Perilla , Apigenina , Luteolina , Fenóis , Extratos Vegetais , Folhas de Planta
13.
Phytochem Anal ; 33(7): 1147-1155, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908761

RESUMO

INTRODUCTION: Harvest time plays an important role on the quality of medicinal plants. The leaves of Crataegus pinnatifida Bge. var major N.E.Br (hawthorn leaves) could be harvested in summer and autumn according to the Pharmacopoeia of the People's Republic of China (Pharmacopoeia). However, little is known about the difference of the chemical constituents in hawthorn leaves with the harvest seasonal variations. OBJECTIVE: The chemical constituents of hawthorn leaves in different months were comprehensively analysed to determine the best harvest time. METHODS: Initially, the chemical information of the hawthorn leaves were obtained by ultra-high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Subsequently, principal component analysis (PCA) was applied to compare the chemical compositions of hawthorn leaves harvested in different months. Then, an absolute quantitation method was established using high-performance liquid chromatography-charged aerosol detector (HPLC-CAD) to determine the contents of five compounds and clarify the changes of these components with the harvest seasonal variations. Meanwhile, a semi-quantitative method by integrating HPLC-CAD with inverse gradient compensation was also established and verified. RESULTS: Fifty-eight compounds were identified through UHPLC-Q-TOF-MS. PCA revealed that the harvest season of hawthorn leaves had a significant effect on the chemical compositions. The contents of five components were relatively high in autumn. Other four main components without reference standards were further analysed through the semi-quantitative method, which also showed a high content in autumn. CONCLUSIONS: This work emphasised the effect of harvest time on the chemical constituents of hawthorn leaves and autumn is recommended to ensure the quality.


Assuntos
Crataegus , Plantas Medicinais , China , Cromatografia Líquida de Alta Pressão/métodos , Crataegus/química , Folhas de Planta/química , Plantas Medicinais/química
14.
Nanomicro Lett ; 14(1): 1, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859323

RESUMO

Conductive biomaterials based on conductive polymers, carbon nanomaterials, or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering, owing to the similar conductivity to human skin, good antioxidant and antibacterial activities, electrically controlled drug delivery, and photothermal effect. However, a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking. In this review, the design and fabrication methods of conductive biomaterials with various structural forms including film, nanofiber, membrane, hydrogel, sponge, foam, and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized. The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies (electrotherapy, wound dressing, and wound assessment) were reviewed. The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound (infected wound and diabetic wound) and for wound monitoring is discussed in detail. The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well.

15.
Molecules ; 26(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803599

RESUMO

BACKGROUND: Ginseng is widely used as herb or food. Different parts of ginseng have diverse usages. However, the comprehensive analysis on the ginsenosides in different parts of ginseng root is scarce. METHODS: An ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) combined with UNIFI informatics platform and ultra-high-performance liquid chromatography-charged aerosol detection (UHPLC-CAD) were employed to evaluate the different parts of cultivated ginseng root. RESULTS: 105 ginsenosides including 16 new compounds were identified or tentatively characterized. 22 potential chemical markers were identified, 20, 17, and 19 for main root (MR) and fibrous root (FR), main root (MR) and branch root (BR), and main root (MR) and rhizome (RH), respectively. The relative contents of Re, Rb1, 20(R)-Rh1, Rd, and Rf were highest in FR. The relative content of Rg1 was highest in RH. The total relative content of pharmacopoeia indicators Rg1, Re, and Rb1 was highest in FR. CONCLUSION: The differences among these parts were the compositions and relative contents of ginsenosides. Under our research conditions, the peak area ratio of Rg1 and Re could distinguish the MR and FR samples. Fibrous roots showed rich ingredients and high ginsenosides contents which should be further utilized.


Assuntos
Ginsenosídeos/química , Ginsenosídeos/isolamento & purificação , Panax/química , China , Cromatografia Líquida de Alta Pressão , Jardins , Humanos , Espectrometria de Massas , Medicina Tradicional Chinesa , Estrutura Molecular , Raízes de Plantas/química , Plantas Medicinais/química , Rizoma/química , Distribuição Tecidual
16.
Zhongguo Zhong Yao Za Zhi ; 46(3): 567-574, 2021 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-33645021

RESUMO

A method was established for content determination of two kinds of phenolic acids, including rosmarinic acid)(RA) and caffeic acid(CA), and six kinds of flavonoids including scutellarein-7-O-diglucuronide(SDG), luteolin-7-O-diglucuronide(LDG), apigenin-7-O-diglucuronide(ADG), scutellarin-7-O-glucuronide(SG), luteolin-7-O-glucuronide(LG), and apigenin-7-O-glucuronide(AG) in Perilla frutescens leaves. The content of eight chemical components was measured based on ten P. frutescens germplasms of different chemotypes of volatile oil, different cultivated years, and different harvesting periods. The results showed that there was a great difference between the two kinds of constituents of different germplasms. The total content of the two phenolic acids was 2.24-34.44 mg·g~(-1), and the total content of the six flavonoids was 11.55-34.71 mg·g~(-1). Then according to content from most to least, the order of each component was RA(2.13-33.97 mg·g~(-1)), LDG(1.31-14.80 mg·g~(-1)), SG(1.97-8.45 mg·g~(-1)), ADG(2.68-7.60 mg·g~(-1)), SDG(1.16-5.87 mg·g~(-1)), LG(0.78-1.91 mg·g~(-1)), AG(0.56-1.00 mg·g~(-1)), and CA(0.11-0.68 mg·g~(-1)). The chemical contents of the 5 PA-type germplasms in 2017 were mostly higher than those in 2018 showing a large variation with the cultivation years. These contents of two kinds of phenolic acids of 9 germplasms fluctuated with the harvesting time. The content decreased before early flower spike(the 3~(rd) to 18~(th) in August) at first and began to increase in flowering and fruiting period(the 18~(th) in August to 2~(nd) in September). However, these contents had slowly decreasing trend after 2~(nd) in September till 17~(th) in the same month. Interestingly, the content raised again in the maturity of fruits. The variation tendency of contents in six kinds of flavonoids components was inconsistent in different germplasms with the variation of harvesting time. The content of flavonoids in part of germplasms was negatively correlated with the fluctuation of phenolic acids. There was no correlation between phenolic acids and chemical type of the volatile oil. This paper may provide a reference for the high-quality germplasm of P. frutescens cultivation.


Assuntos
Óleos Voláteis , Perilla frutescens , Flavonoides , Fenóis , Folhas de Planta
17.
Zhongguo Zhong Yao Za Zhi ; 46(4): 951-965, 2021 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-33645102

RESUMO

The Qinling-Daba Mountains area is the main producing areas of Gynostemma longipes for medicinal usage, and samples of wild whole plants in Pingli, Shaanxi Province and Qingchuan, Sichuan Province were collected. The ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS~E) was used to profile the chemical compositions and analyze the similarities and differences of G. longipes samples in these areas. Based on the accurate molecular weight and fragment information obtained from Q-TOF-MS~E, the structures of the main components were identified by combining with the mass spectra, chromatographic behaviors of reference standards and related literatures. The results showed that the components of wild G. longipes from different places among Qinling-Daba Mountains area were similar. Forty-five chemical components were identified in the whole plant of G. longipes from Pingli, Shaanxi Province, including 43 triterpenoid saponins and 2 flavonoids which contain all main peaks in its fingerprint. The main components are dammarane-type triterpenoid saponins, such asgypenoside ⅩLⅨ, gypenoside A and its malonylated product of glycosyl.


Assuntos
Medicamentos de Ervas Chinesas , Saponinas , Cromatografia Líquida de Alta Pressão , Gynostemma , Espectrometria de Massas
18.
J Pharm Biomed Anal ; 198: 113984, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691203

RESUMO

Epimedium herb is a well-known traditional Chinese medicine (TCM) that is used for treating kidney-yang deficiency, impotence and rheumatism, and flavonoids are the main active ingredients. The leaves and rhizomes of Epimedium herb are two separate kinds of medicinal materials with different functional indications and clinical applications. This study aimed to comprehensively analyze the chemical components of different parts of the herb from three Epimedium species (Epimedium sagittatum, E. pubescens and E. myrianthum) by using ultra high-performance liquid chromatography coupled with photo-diode array and quadrupole time-of-flight mass spectrometry (UHPLC-PDA-Q-TOF/MS) and multivariate statistical analysis to clarify the differences. Firstly, the workflow of UHPLC-Q-TOF/MS combined with UNIFI informatics was developed for characterizing the chemical compounds in different parts of Epimedium herb. Based on the exact mass information, the fragmentation characteristics and the retention times of compounds, all chromatographic peaks (74 chemical components) were identified. Secondly, 21 potential chemical markers for differentiating different parts of Epimedium herb were selected through PCA and PLS-DA analysis. The characteristic components in the leaves included flavonoids with Anhydroicaritin (type A, C-4' linked methoxy) as the backbone, and the characteristic components in the stems and rhizomes were Magnoline and flavonoids with Demethylanhydroicaritin (type B, C-4' linked hydroxyl) as the backbone. Thirdly, the UHPLC-PDA combined with heatmap visualization was employed to clarify the distribution of chemical components with high content in different parts of Epimedium herb. The results showed clear differences in the contents of chemical components in leaves, stems and rhizomes. The levels of flavonoids with Anhydroicaritin backbone were high in the leaves, and levels of flavonoids with Demethylanhydroicaritin backbone were high in the rhizomes. The levels of Magnoline in stems and rhizomes were higher than that in leaves. The contents of most of the compounds in stems remained low. The leaves and the other two parts (stems and rhizomes) can be distinguished by qualitative and semi-quantitative analysis of Magnoline and Epimedoside A (type B backbone). These results indicated that the different plant parts of Epimedium herb can be quickly and accurately distinguished by this method, establishing a foundation for the application of Epimedium herb.


Assuntos
Epimedium , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Medicina Tradicional Chinesa , Rizoma/química , Espectrometria de Massas em Tandem
19.
J Asian Nat Prod Res ; 23(3): 205-216, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33459045

RESUMO

Steroidal saponins were the main active constituents of the traditional medicinal herb Asparagus cochinchinensis. A phytochemical investigation of A. cochinchinensis roots led to the isolation of nine new steroidal glycosides (1-9) and seven known analogues (10-16). Their structures were established by spectroscopic analyses as well as necessary chemical evidence.


Assuntos
Asparagus , Saponinas , Glicosídeos , Estrutura Molecular , Raízes de Plantas
20.
Mitochondrial DNA B Resour ; 5(1): 817-818, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33366765

RESUMO

Epimedium wushanense is a well-known medicinal plant in Berberidaceae in China. In this study, we sequenced the complete chloroplast (cp) genome of E. wushanense. The results showed that the cp genome of E. wushanense was 157,283 bp in length, which is composed of a large single-copy region (LSC, 88,579 bp) and a small single-copy region (SSC, 17,082 bp) that were separated by a pair of inverted repeat regions (IRa and IRb, 25,811 bp). The chloroplast genome of E. wushanense contains 112 unique genes, of which are 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. The overall GC content was 38.78%. The phylogenetic tree analysis showed that E. wushanense was closely related to E. pseudowushanense, E. lishihchenii, and E. sagittatum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA