Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oncol Rep ; 28(6): 1991-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22992976

RESUMO

In this study, we investigated the apoptotic effect of emodin on human pancreatic cancer cell line Panc-1 in vitro and in vivo as well as the possible mechanisms involved. In vitro, human pancreatic cancer cell line Panc-1 was exposed to varying concentrations of emodin (0, 10, 20, 40 or 80 µmol/l). Then the mitochondrial membrane potential (MMP) was analyzed by JC-1 staining, cell apoptosis was analyzed by flow cytometry (FCM) and cell proliferation was analyzed by MTT. In vivo, nude mice orthotopically implanted were randomly divided into five groups to receive treatments by different doses of emodin: control group (normal saline 0.2 ml), E10 group (emodin 10 mg/kg), E20 group (emodin 20 mg/kg), E40 group (emodin 40 mg/kg) and E80 group (emodin 80 mg/kg). Each mouse was treated 5 times by intraperitoneal injection of emodin every 3 days. During the treatment, the feeding stuff was recorded. One week after the last treatment, we recorded the body weight and the maximum diameter of tumor in each group before the mice were sacrificed. Then the cell apoptosis of the tumor was tested by TUNEL assay. The results in vitro showed that the MMP of the cells declined and the apoptosis rate increased with the emodin concentration increasing and the cell proliferation of each group was inhibited in a dose- and time-dependent manner by emodin. The feeding stuff curve did not decline significantly in E40 group and the apoptosis rate of the tumor cells in this group was higher than the lower-dose groups. Taken together, our results demonstrate that emodin may induce the pancreatic cancer cell apoptosis via declining the MMP and a moderate dose of emodin improved the living state of the model mice.


Assuntos
Apoptose/efeitos dos fármacos , Emodina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ingestão de Alimentos , Emodina/administração & dosagem , Emodina/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/fisiopatologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Int J Oncol ; 39(6): 1381-90, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21805032

RESUMO

Pancreatic adenocarcinoma is one of the most common malignancies worldwide. Gemcitabine is currently the standard first-line chemotherapeutic agent for pancreatic cancer. However, gemcitabine can induce activation of Akt and nuclear factor-κB (NF-κB), which is associated with its chemoresistance. It has been reported that gemcitabine combination therapies result in improved survival outcomes in pancreatic cancer. Therefore, agents that can either enhance the effects of gemcitabine or overcome chemoresistance to the drug are needed for the treatment of pancreatic cancer. Emodin is an active component of Chinese medicinal herbs and can inhibit the activation of Akt and NF-κB. In this study, we investigated whether emodin could enhance the anticancer effect of gemcitabine on pancreatic cancer in vivo. We demonstrated that treatment of gemcitabine combined with emodin efficiently suppressed tumor growth in mice inoculated with pancreatic tumor cells. This treatment paradigm promoted apoptotic cell death and mitochondrial fragmentation. Furthermore, it reduced phosphorylated-Akt (p-Akt) level, NF-κB activation and Bcl-2/Bax ratio, increased caspase-9 and -3 activation, Cytochrome C (CytC) release occurred in combination therapy. Collectively, emodin enhanced the activity of gemcitabine in tumor growth suppression via inhibition of Akt and NF-κB activation, thus promoting the mitochondrial-dependent apoptotic pathway. Therefore, our findings may provide new insights into understanding the pharmacological regulation of emodin on gemcitabine-mediated proapoptosis in pancreatic cancer and may aid in the design of new therapeutic strategies for the intervention of human pancreatic cancers.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Emodina/farmacologia , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Rheum/química , Adenocarcinoma/enzimologia , Animais , Peso Corporal/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Feminino , Humanos , Camundongos , NF-kappa B/metabolismo , Neoplasias Pancreáticas/enzimologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA