Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sep Sci ; 47(1): e2300583, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234034

RESUMO

Aconite is the processed product of the seed root of Aconitum carmichaelii Debx. Aconite is a commonly used traditional Chinese medicine, which is generally used after processing. Black aconite, light aconite, and salted aconite are three different processed aconite products. They have the effects of restoring yang and saving energy enemy, dispersing cold, and relieving pain. However, clinical aconite poisoning cases have frequently been reported. In our study, we investigated the effects of three different processed aconite products on the changes of metabolites in vivo. A total of 42 rats were randomly divided into seven groups with six rats in each group. After three consecutive days of intragastric administration of 2.7 g/kg of the aconite-processed product, rat serums were obtained. The rat metabolites were detected using liquid chromatography-tandem mass spectrometry. The altered metabolites related to aconite-processed products were discovered by statistical analysis using metaboanalyst software. Our study is the first time to comprehensively evaluate the effects of three different processed aconite products on rat metabolites based on pseudotargeted metabolomics.


Assuntos
Aconitum , Medicamentos de Ervas Chinesas , Ratos , Animais , Aconitum/química , Medicamentos de Ervas Chinesas/análise , Raízes de Plantas/química , Medicina Tradicional Chinesa , Cromatografia Líquida , Metabolômica/métodos
2.
Cell Host Microbe ; 32(1): 48-62.e9, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38056458

RESUMO

Acetaminophen overuse is a common cause of acute liver failure (ALF). During ALF, toxins are metabolized by enzymes such as CYP2E1 and transformed into reactive species, leading to oxidative damage and liver failure. Here, we found that oral magnesium (Mg) alleviated acetaminophen-induced ALF through metabolic changes in gut microbiota that inhibit CYP2E1. The gut microbiota from Mg-supplemented humans prevented acetaminophen-induced ALF in mice. Mg exposure modulated Bifidobacterium metabolism and enriched indole-3-carboxylic acid (I3C) levels. Formate C-acetyltransferase (pflB) was identified as a key Bifidobacterium enzyme involved in I3C generation. Accordingly, a Bifidobacterium pflB knockout showed diminished I3C generation and reduced the beneficial effects of Mg. Conversely, treatment with I3C or an engineered bacteria overexpressing Bifidobacterium pflB protected against ALF. Mechanistically, I3C bound and inactivated CYP2E1, thus suppressing formation of harmful reactive intermediates and diminishing hepatocyte oxidative damage. These findings highlight how interactions between Mg and gut microbiota may help combat ALF.


Assuntos
Acetaminofen , Falência Hepática Aguda , Humanos , Camundongos , Animais , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Magnésio/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36147648

RESUMO

Fuzi is commonly used in traditional Chinese medicine. Clinical Fuzi poisoning cases have frequently been reported. Glycyrrhizae Radix is often used to alleviate Fuzi's toxicity. However, the poisoning mechanism of Fuzi and the detoxication mechanism of Glycyrrhizae Radix are still not clear. We identified the chemical components of Fuzi at different decoction times (0.5, 1, 2, 4, and 6 h) using ultrahigh performance liquid chromatography quadrupole time-of-flight mass spectrometry. A total of 35 compounds were detected in the Fuzi decoction, including diester alkaloids, monoester alkaloids, amino acids, phenolic acids, organic acids, glycosides, and sugars among others. The content of diester alkaloids (i.e., subaconitine, neoaconitine, and aconitine) in the Fuzi decoction decreased after 2 h of decoction time, while the content of monoester alkaloids (i.e., benzoyl aconitine and benzoyl subaconitine) reached a peak at 2 h. A total of 32 rats were randomly divided into four groups, including 8 cases in the low-dosage Fuzi decoction group A, 8 cases in the high-dosage Fuzi decoction group B, 8 cases in the Fuzi and glycyrrhizae decoction group C, and 8 cases in the control group D. The decoction was administered orally for 7 days. Then, a serum was obtained. The metabolites' changes were analyzed in serum metabolomics using liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Statistical analysis and pathway analysis were used to assess the effects of glycyrrhizae on the metabolic changes induced by Fuzi. The behavioral and biochemical characteristics indicated that Fuzi exhibited toxic effects on rats and their metabolic profiles changed. However, the metabolic profiles of the glycyrrhizae group became similar to those of the control group. These profiles showed that glycyrrhizae can effectively improve Fuzi poisoning rats. Our study demonstrated that the established pseudotargeted metabolomics is a powerful approach for investigating the mechanisms of herbal toxicity.

4.
Fitoterapia ; 157: 105107, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34952142

RESUMO

Three novel norsesquiterpenoids, (2R,4S,8aR)-8,8a,1,2,3,4-hexahydro-2-hydroxy-4,8a-dimethyl-2(2H)-naphthalenone (1), (1S,3S,4S,4aS,8aR)-4,8a-dimethyloctahydronaphthalene-1,3,4a(3H)-triol(2), (4S,4aS,8aS)-octahydro-4a-hydroxy-4, 8a-dimethyl-1(2H)-naphthalenone (3), as well as six other known analogues (4-9), were isolated from the culture broth of Streptomyces sp. XM17, an actinobacterial strain inhabiting the fresh feces of the giant panda Ailuropoda melanoleuca. The chemical structures of 1-3 were elucidated comprehensively by NMR spectroscopic and MS analyses, furthermore, the stereochemical configurations were resolved by NOESY experiments, along with ECD spectral and single-crystal X-ray crystallographic analyses. These compounds were then tested for their antiviral activities using the "pretreatment of virus" approach, which showed that most of these compounds were potent in inhibiting the entry of influenza A virus, with IC50 values ranging from 5 to 49 nM and selectivity indices all above 500.


Assuntos
Antivirais/isolamento & purificação , Fezes/microbiologia , Vírus da Influenza A/efeitos dos fármacos , Sesquiterpenos/isolamento & purificação , Streptomyces/química , Animais , Antivirais/química , Antivirais/farmacologia , Antivirais/toxicidade , Embrião de Galinha , Dicroísmo Circular , Cristalografia por Raios X , Cães , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/toxicidade , Ursidae
5.
Artigo em Inglês | MEDLINE | ID: mdl-33178317

RESUMO

Diminished ovarian reserve (DOR) is the weakening of ovarian oocyte production and quality. It will further become premature ovarian failure without timely cure. However, disease pathology and diagnostic markers are still incompletely understood. Liu-Wei-Di-Huang (LWDH) pill, a traditional Chinese medicine formula, is commonly used in the treatment of DOR in China. To explore the mechanism of the effect of LWDH on in vitro fertilization (IVF) outcomes in patients with DOR, a pseudotargeted metabolomics study combined with multivariate data processing strategy was carried out. A liquid chromatography tandem mass spectrometry-based metabolomics approach was applied to characterize metabolic biomarker candidates. Multiple pattern recognition was used to determine groups and confirm important variables. A total of 21 potential biomarkers were characterized, and related metabolic pathways were identified. The study displayed that the established pseudotargeted metabolomics strategy is a powerful approach for investigating the mechanism of DOR and LWDH. In addition, the approach may highlight biomarkers and metabolic pathways and can capture subtle metabolite changes from headache, which may lead to an improved mechanism understanding of DOR diseases and LWDH treatment.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31885637

RESUMO

The hypoglycemic decoction (HD) is a traditional Chinese medicine (TCM) preparation for the treatment of diabetes mellitus (DM), with a remarkable therapeutic effect. However, its mechanism of action is still unclear at the metabolic level. In this study, the biochemical markers from type 2 DM (T2DM) rats, induced by a high-sugar and high-fat diet combined with streptozotocin (STZ), were detected. The metabolomics-based analysis using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) was conducted to evaluate urine samples from control, model, metformin, and HD groups. After oral administration of HD for 28 days, the general state, weight, fasting blood glucose (FBG), blood lipid level, oral glucose tolerance test (OGTT), fasting insulin (FINS), insulin sensitivity index (ISI), and homeostasis model assessment of insulin resistance (HOMA-IR) were significantly improved (P < 0.01). The western blotting showed that HD can enhance the protein expression of glucose transporter 4 (GLUT4) and adenosine monophosphate-activated protein kinase (AMPK). The metabolomics results revealed that after treatment with HD, the levels of L-carnitine, 1-methyladenosine, 1-methylhistamine, and 3-indoleacrylic acid were upregulated and the levels of riboflavin, phenylalanine, atrolactic acid, 2-oxoglutarate, citrate, isocitrate, cortisol, and glucose were downregulated. The main mechanism may be closely related to the regulation of the tricarboxylic acid (TCA) cycle, phenylalanine metabolism, glyoxylate metabolism, and dicarboxylate metabolism. Additionally, it was also found that HD can regulate the protein expression of GLUT4 and AMPK to interfere with TCA cycle and carbohydrate metabolism to treat T2DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA