Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Funct ; 15(7): 3411-3419, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38470815

RESUMO

Tetrabromobisphenol A (TBBPA) is a global pollutant. When TBBPA is absorbed by the body through various routes, it can have a wide range of harmful effects on the body. Green tea polyphenols (GTPs) can act as antioxidants, resisting the toxic effects of TBBPA on animals. The effects and mechanisms of GTP and TBBPA on oxidative stress, inflammation and apoptosis in the mouse lung are unknown. Therefore, we established in vivo and in vitro models of TBBPA exposure and GTP antagonism using C57 mice and A549 cells and examined the expression of factors related to oxidative stress, autophagy, inflammation and apoptosis. The results of the study showed that the increase in reactive oxygen species (ROS) levels after TBBPA exposure decreased the expression of autophagy-related factors Beclin1, LC3-II, ATG3, ATG5, ATG7 and ATG12 and increased the expression of p62; oxidative stress inhibits autophagy levels. The increased expression of the pro-inflammatory factors IL-1ß, IL-6 and TNF-α decreased the expression of the anti-inflammatory factor IL-10 and activation of the NF-κB p65/TNF-α pathway. The increased expression of Bax, caspase-3, caspase-7 and caspase-9 and the decreased expression of Bcl-2 activate apoptosis-related pathways. The addition of GTP attenuated oxidative stress levels, restored autophagy inhibition and reduced the inflammation and apoptosis levels. Our results suggest that GTP can attenuate the toxic effects of TBBPA by modulating ROS, reducing oxidative stress levels, increasing autophagy and attenuating inflammation and apoptosis in mouse lung and A549 cells. These results provide fundamental information for exploring the antioxidant mechanism of GTP and further for studying the toxic effects of TBBPA.


Assuntos
Lesão Pulmonar , NF-kappa B , Bifenil Polibromatos , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Estresse Oxidativo , Apoptose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Polifenóis/farmacologia , Chá , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia
2.
Fish Shellfish Immunol ; 146: 109382, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242263

RESUMO

The extensive application of Tetrabromobisphenol A (TBBPA) leads to the pollution of part of the water environment and brings great safety risks to aquatic animals. As a natural extract, tea polyphenols (TPs) have antioxidant and anti-inflammatory effects. Gills are one of the immune organs of fish and constitute the first line of defense of the immune system. However, it was unclear whether TPs could mitigate TBBPA-induced gills injury. Therefore, an animal model was established to investigate the effect of TPs on TBBPA-induced gills. The results indicated that TBBPA changed the coefficient and tissue morphology of carp gills. In addition, TBBPA induced oxidative stress and inflammation, leading to ferroptosis and apoptosis in carp gills. Dietary addition of TPs significantly improved the antioxidant capacity of carp, effectively inhibited the overexpression of TLR4/NF-κB and its mediated inflammatory response. Moreover, TPs restored iron metabolism, reduced the expression of pro-apoptotic factors thereby alleviating ferroptosis and apoptosis in carp gills. This study enriched the protective effect of TPs and provided a new way to improve the innate immunity of carp.


Assuntos
Carpas , Ferroptose , Bifenil Polibromatos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Antioxidantes/metabolismo , Receptor 4 Toll-Like/genética , Carpas/metabolismo , Brânquias , Polifenóis/farmacologia , Polifenóis/metabolismo , Transdução de Sinais , Proteínas de Peixes , Inflamação/induzido quimicamente , Inflamação/veterinária , Inflamação/metabolismo , Apoptose , Chá/metabolismo
3.
Fish Shellfish Immunol ; 138: 108847, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37230306

RESUMO

Selenium (Se), one of the essential trace elements of fish, regulates immune system function and maintains immune homeostasis. Muscle is the important tissue that generate movement and maintain posture. At present, there are few studies on the effects of Se deficiency on carp muscle. In this experiment, carps were fed with dietary with different Se content to successfully establish a Se deficiency model. Low-Se dietary led to the decrease of Se content in muscle. Histological analysis showed that Se deficiency resulted in muscle fiber fragmentation, dissolution, disarrangement and increased myocyte apoptosis. Transcriptome revealed a total of 367 differentially expressed genes (DEGs) were screened, including 213 up-regulated DEGs and 154 down-regulated DEGs. Bioinformatics analysis showed that DEGs were concentrated in oxidation-reduction process, inflammation and apoptosis, and were related to NF-κB and MAPKs pathways. Further exploration of the mechanism showed that Se deficiency led to excessive accumulation of ROS, decreased the activity of antioxidant enzymes, and also resulted in increased expression of the NF-κB and MAPKs pathways. In addition, Se deficiency significantly increased the expressions of TNF-α, IL-1ß and IL-6, and the pro-apoptotic factors BAX, p53, caspase-7 and caspase-3, while decreased the expressions of anti-apoptotic factors Bcl-2 and Bcl-xl. In conclusion, Se deficiency reduced the activities of antioxidant enzymes and led to excessive accumulation of ROS, which caused oxidative stress and affected the immune function of carp, leading to muscle inflammation and apoptosis.


Assuntos
Carpas , Desnutrição , Selênio , Animais , Antioxidantes/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Suplementos Nutricionais , Selênio/metabolismo , Carpas/genética , Carpas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imunidade Inata , Transdução de Sinais , Inflamação/veterinária , Apoptose , Músculos/metabolismo
4.
Biol Trace Elem Res ; 201(3): 1286-1300, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35397105

RESUMO

Selenium (Se) is a vital trace element in the regulation of inflammation and antioxidant reactions in both animals and humans. Se deficiency is rapidly affecting lung function. The present study investigated the molecular mechanism of Se deficiency aggravates reactive oxygen species (ROS)-induced inflammation, leading to fibrosis in lung. Mice fed with different concentrations of Se to establish the model. In the Se-deficient group, the ROS and malondialdehyde (MDA) was increased, and the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and catalase (CAT) reduced. The histopathological observation showed that Se deficiency lead to lung texture damage with varying degrees of degeneration, necrosis, shedding of some alveolar epithelial cells, and inflammatory cell infiltration. Immunohistochemistry showed that the expression of α-smooth muscle actin (α-SMA) increased. The fibrosis index was verified with Sirius red staining. The ELISA and qPCR results showed that the inflammatory cytokines (TNF-α and IL-1ß) and ECM (collagen I, collagen IV, fibronectin, and laminin) were increased with ROS increasing, which was induced by Se deficiency. The results displayed that oxidative stress with Se deficiency led to an increase in tissue inhibitors of metalloproteinase (TIMPs), but a decrease in matrix metalloproteinases (MMPs). All the results indicated that Se deficiency induced excessive ROS accumulation to generate inflammation, which disrupted ECM homeostasis and aggravated fibrosis in the lung.


Assuntos
Desnutrição , Selênio , Humanos , Camundongos , Animais , Antioxidantes/metabolismo , Selênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Pulmão/metabolismo , Superóxido Dismutase/metabolismo , Inflamação/induzido quimicamente , Fibrose , Colágeno
5.
Biol Trace Elem Res ; 201(4): 1878-1887, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35576098

RESUMO

Selenium (Se) is one of the essential trace elements in animal organisms with good antioxidant and immune-enhancing abilities. In this study, we investigated the effect and mechanism of Se deficiency on skeletal muscle cell differentiation. A selenium-deficient skeletal muscle model was established. The skeletal muscle tissue and blood Se content were significantly reduced in the Se deficiency group. HE staining showed that the skeletal muscle tissue had a reduced myofiber area and nuclei and an increased myofascicular membrane with Se deficiency. The TUNEL test showed massive apoptosis of skeletal muscle cells in Se deficiency. With Se deficiency, reactive oxygen species (ROS) and malondialdehyde (MDA) increased, and the activities of glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) were inhibited. In in vitro experiments, microscopic observations showed that the low-Se group had reduced C2C12 cell fusion and a reduced number of differentiated myotubes. In addition, qPCR results showed that differentiation genes (Myog, Myod, Myh2, Myh3, and Myf5) were significantly reduced in the low Se group. Meanwhile, Western blot analysis showed that the levels of differentiation proteins (Myog, Myod, and Myhc) were significantly reduced in the low-Se group. This finding indicates that Se deficiency reduces the expression of skeletal muscle cell differentiation factors. All the above data suggest that Se deficiency can lead to oxidative stress in skeletal muscle, resulting in a reduction in the differentiation capacity of muscle cells.


Assuntos
Antioxidantes , Selênio , Camundongos , Animais , Antioxidantes/metabolismo , Estresse Oxidativo , Diferenciação Celular , Músculo Esquelético/metabolismo , Glutationa Peroxidase/metabolismo
6.
Microbiol Spectr ; 10(6): e0320722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287004

RESUMO

Intestinal microbiota dysbiosis is a well established characteristic of ulcerative colitis (UC). Regulating the gut microbiota is an effective UC treatment strategy. Berberine (BBR), an alkaloid extracted from several Chinese herbs, is a common traditional Chinese medicine. To establish the efficacy and mechanism of action of BBR, we constructed a UC model using healthy adult shorthair cats to conduct a systematic study of colonic tissue pathology, inflammatory factor expression, and gut microbiota structure. We investigated the therapeutic capacity of BBR for regulating the gut microbiota and thus work against UC in cats using 16S rRNA genes amplicon sequencing technology. Our results revealed that dextran sulfate sodium (DSS)-induced cat models of UC showed weight loss, diarrhea accompanied by mucous and blood, histological abnormalities, and shortening of the colon, all of which were significantly alleviated by supplementation with BBR. A 16S rRNA gene-based microbiota analysis demonstrated that BBR could significantly benefit gut microbiota. Western blot, quantitative PCR, and enzyme-linked immunosorbent assays (ELISAs) showed that in DSS-induced cat models, the expression of the inflammatory factors was increased, activating the JAK2/STAT3 signaling pathway, and treatment with BBR reversed this effect. The myosin light chain (MLC) phosphorylation in the smooth muscle of the intestines is associated with motility of inflammation-related diarrhea in cats. This study used gut flora analyses to demonstrate the anti-UC effects of BBR and its potential therapeutic mechanisms and offers novel insights into the prevention of inflammatory diseases using natural products. IMPORTANCE Ulcerative colitis (UC) is common in clinics. Intestinal microbiota disorder is correlated with ulcerative colitis. Although there are many studies on ulcerative colitis in rats, there are few studies on colitis in cats. Therefore, this study explored the possibility of the use of BBR as a safe and efficient treatment for colitis in cats. The results demonstrated the therapeutic effects of BBR on UC based on the state of the intestinal flora. The study found BBR supplementation to be effective against dextran sulfate sodium (DSS)-induced colitis, smooth muscle damage, and gut microbiota dysbiosis.


Assuntos
Berberina , Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Gatos , Ratos , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/metabolismo , Sulfato de Dextrana/efeitos adversos , Disbiose/tratamento farmacológico , RNA Ribossômico 16S/genética , Inflamação/metabolismo , Colite/induzido quimicamente , Colo/metabolismo , Modelos Animais de Doenças
7.
Biol Trace Elem Res ; 200(10): 4316-4324, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35013889

RESUMO

The trace element selenium (Se) plays an indispensable role in the growth of humans and animals due to its antioxidant function. Mastitis is one of the most important diseases affecting the dairy industry in the world. In recent years, long non-coding RNAs (lncRNAs) have been implicated in a series of cellular processes and disease development processes. RNA-sequencing technology was used to characterize lncRNA profiles and compared transcriptomic dynamics among the control group, the LPS group, and the Se-treated group to highlight the potential roles and functions of lncRNAs in the mammary epithelial cells of dairy cows. We identified 14 specific lncRNAs related to Se and their predicted target genes. KEGG and GO functional annotation was used to elucidate their biological function and the pathways in which they may be involved. The present study provides novel insights for exploring the molecular markers for the protection of Se against mastitis in dairy cows.


Assuntos
Mastite Bovina , RNA Longo não Codificante , Selênio , Animais , Bovinos , Feminino , Perfilação da Expressão Gênica , Humanos , Mastite Bovina/genética , RNA Longo não Codificante/genética , Selênio/farmacologia , Transcriptoma
8.
Biol Trace Elem Res ; 199(2): 594-603, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32328968

RESUMO

Selenium (Se) is an essential trace element that maintains normal physiological functions in organisms. Since the discovery of glutathione peroxidase (GSH-PX), public interest in selenoproteins has gradually increased. Based on previous studies, dietary Se maintains erythrocyte homeostasis through selenoprotein-induced mediation of redox reactions. Furthermore, both the surface phosphatidylserine (PS) and intramembrane stomatin contents can be used as indicators of erythrocyte osmotic fragility. This study focused on the mechanism by which dietary Se deficiency increases erythrocyte osmotic fragility. We fed Se-deficient grain to mice for 8 weeks to establish a Se deficiency model in mice. We measured Se levels in the blood as well as the activities of antioxidant enzymes associated with selenoproteins in a Se-deficient environment. We used Western blotting, routine blood analysis, and other methods to detect red blood cell oxidative stress levels, membrane stomatin levels, and PS externalization. Fresh blood was collected to test erythrocyte osmotic fragility. The results showed that antioxidant enzyme activity was affected by dietary Se deficiency. Oxidative stress increased lipid peroxidation and the ROS content in the blood of the mice. Under such conditions, decreased PS exposure and stomatin content in the erythrocyte membrane eventually affected the structure of the erythrocyte membrane and increased erythrocyte osmotic fragility.


Assuntos
Selênio , Animais , Eritrócitos/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos , Camundongos , Fragilidade Osmótica , Estresse Oxidativo , Fosfatidilserinas
9.
Biol Trace Elem Res ; 199(8): 2904-2912, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33098075

RESUMO

Selenium, a micronutrient, is indispensable for maintaining normal metabolic functions in animals and plants. Selenium has shown promise in terms of its effect on the immune function, ability to control inflammation, and ability to improve bovine mammary gland health. Bovine mastitis remains a major threat to dairy herds globally and has economically significant impacts. The exosomes are a new mode of intercellular communication. Exosomal transfer of mRNAs, microRNAs, and proteins between cells affects the protein production of recipient cells. The development of novel high-throughput omics approaches and bioinformatics tools will help us understand the effects of selenium on immunobiology. However, the differential expression of mRNAs in bovine mammary epithelial cell-derived exosomes has rarely been studied. In the present study, differences in the exosomal transcriptome between control and selenium-treated MAC-T cells were identified by RNA sequencing and transcriptome analysis. The results of mRNA profiling revealed 1978 genes in exosomes that were differentially expressed between the selenium-treated and control cells. We selected and analyzed 91 genes that are involved in inflammation, redox reactions, and immune cell function related to mastitis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed enrichment pathways involved in selenoproteins and the Ras/PI3K/AKT, MAPK, and FOXO signaling pathways. Our results revealed that selenium may play a crucial role in immune and inflammatory regulation by influencing the differential expression of exosomal mRNAs of key genes in bovine mastitis.


Assuntos
Mastite Bovina , MicroRNAs , Selênio , Animais , Bovinos , Feminino , Perfilação da Expressão Gênica , Mastite Bovina/tratamento farmacológico , Mastite Bovina/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases , RNA Mensageiro/genética , Selênio/farmacologia , Linfócitos T , Transcriptoma
10.
Food Funct ; 11(1): 200-210, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31845693

RESUMO

Selenium (Se) is an essential trace element for living organisms and plays diverse biological roles. Endometritis is a common reproductive disorder in dairy cows, causing huge economic losses. In this study, we explored the effects of Se on lipopolysaccharide (LPS)-induced endometritis in mice and expounded its underlying mechanism of action. We validated the anti-inflammatory effects of Se in vivo by establishing a mouse model of endometriosis induced by LPS. Se significantly reversed the LPS-induced uterine histopathological changes, MPO activity and inflammatory cytokine levels in vivo. Simultaneously, TLR4 and its downstream signaling pathways, lipid rafts and cholesterol levels in the tissues were also attenuated by Se under LPS stimulation. In addition, the molecular mechanism of the Se anti-inflammatory effect was clarified in mouse endometrial epithelial cells. Se inhibited TLR4-mediated NF-κB and IRF3 signal transduction pathways to reduce the production of inflammatory factors. We found that Se promoted the consumption of cholesterol to suppress the lipid rafts coming into being and inhibited the TLR4 positioning to the lipid raft to prevent the inflammatory response caused by LPS. Meanwhile, Se activated the LxRα-ABCA1 pathway to cause the outflow of cholesterol in cells. The anti-inflammatory effect of Se was disrupted by silencing LxRα. In conclusion, Se exerted anti-inflammatory effects most likely by the LxRα-ABCA1 pathway activation, which inhibited lipid rafts by depleting cholesterol and ultimately impeded the migration of TLR4 to lipid rafts.


Assuntos
Colesterol/metabolismo , Endometrite/tratamento farmacológico , Microdomínios da Membrana/metabolismo , Selênio/farmacologia , Receptor 4 Toll-Like/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Endometrite/induzido quimicamente , Feminino , Lipopolissacarídeos , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
11.
Food Funct ; 10(10): 6543-6555, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31545328

RESUMO

Mastitis, a major disease affecting dairy cows, is most commonly caused by Staphylococcus aureus (S. aureus). Selenium (Se) can activate pivotal proteins in immune responses and regulate the immune system, and microRNA-155 (miR-155) is a key transcriptional regulator for inflammation-related diseases. We constructed the model of mouse mastitis in vivo and primary mouse mammary epithelial cells (MMECs) in vitro, which were induced by S. aureus. Se content of the mammary was estimated using an atomic fluorescence spectrophotometer. Histopathological analysis was performed via hematoxylin and eosin (H&E) staining. The mmu-miR-155-5p mimic was transfected in MMECs, and viability was determined through the MTT assay. Transfected efficiency was evaluated by qPCR and fluorescence staining. Cytokines including TNF-α, IL-1ß, IL-10 and TLRs were detected with qPCR. In addition, western blotting was used to evaluate the expression of the NF-κB and MAPKs signaling pathways. The results demonstrated that a Se-supplemented diet improved the content of Se in mammary tissues. Histopathological studies indicated that the mammary glands were protected in the Se-supplemented group after S. aureus infection. Se-supplementation suppressed the production of MPO, mmu-miR-155, TNF-α, IL-1ß, and TLR2 and significantly inhibited the phosphorylation of NF-κB and MAPKs in vivo and in vitro. All the data indicated that mmu-miR-155 played a pro-inflammatory role in our study, and Se-supplementation could suppress the expression of mmu-miR-155 to inhibit inflammation in S. aureus-induced mastitis in mice.


Assuntos
Doenças dos Bovinos/tratamento farmacológico , Mastite/tratamento farmacológico , MicroRNAs/genética , Selênio/administração & dosagem , Infecções Estafilocócicas/veterinária , Animais , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Citocinas/genética , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica , Mastite/genética , Mastite/imunologia , Mastite/microbiologia , Camundongos , MicroRNAs/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia
12.
Biol Trace Elem Res ; 192(2): 196-205, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30756291

RESUMO

Selenium (Se) is an essential micronutrient that maintains normal physiological functions in humans and animals. Se plays a vital role in regulating smooth muscle contractions, and selenoprotein N (SelN), selenoprotein T (SelT), and selenoprotein W (SelW) are closely related to the release of Ca2+. The present study analyzed the effects and mechanisms of SelN, SelT, and SelW in uterine smooth muscle contractions in a mouse model fed Se. The mRNA and protein levels in the uterine smooth muscle of mice were detected by qPCR, Western blot, and immunohistochemical analysis. The results showed that Se played an indispensable role in uterine smooth muscle contractions. Increased Se concentration in food increased the release of Ca2+ to a certain extent, causing CaM expression, MLCK expression, and MLC phosphorylation, which can lead to uterine smooth muscle contractions. In contrast, Se deficiency reduced the release of Ca2+ to a certain degree, thereby reducing the contractile ability of uterine smooth muscle. In this study, genes related to SelN, SelT, and SelW expression in uterine smooth muscle cells were investigated. The results showed that the Se concentration had an effect on the expression of SelN, SelT, and SelW in uterine smooth muscle cells. Se influences the release of Ca2+ through SelN, SelT, and SelW, which changes the expression of MLCK and then affects uterine smooth muscle contractions. The three selenoproteins SelN, SelT, and SelW play a very important role in uterine smooth muscle contractions, and the absence of any of these proteins affects the contractility of the uterus.


Assuntos
Contração Muscular/efeitos dos fármacos , Miométrio/efeitos dos fármacos , Selênio/farmacologia , Selenoproteínas/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Miométrio/metabolismo , Selenoproteínas/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-27293467

RESUMO

Endometritis is commonly caused by pathogenic microorganisms, including Staphylococcus aureus (S. aureus). Piperine, which is a natural medicine, has shown a variety of biological activities. To explore the effect and mechanism of piperine on S. aureus endometritis, a mouse model of S. aureus endometritis was successfully established in the present study. Histopathological changes were observed with H&E staining, cytokines were analyzed by ELISA, mRNA was analyzed by qPCR, and proteins were detected by western blot. The results showed that piperine could significantly alleviate inflammatory injury in S. aureus endometritis. The qPCR and ELISA results showed that piperine effectively reduced the S. aureus-induced overexpression of TNF-α, IL-1ß, and IL-6 but increased the expression of IL-10. The S. aureus-induced inflammation was related to TLR-2 and TLR-4 because the results showed that their expression was increased in S. aureus infection but then decreased with piperine treatment. To further confirm that piperine caused an anti-inflammatory response by targeting NF-κB and MAPKs, the expression of I-κB, p65, p38, ERK, and JNK was measured. The phosphorylation of I-κB, p65, p38, ERK, and JNK was inhibited by piperine in a dose-dependent manner. All of the results indicated that piperine may be a potential anti-inflammatory drug both in endometritis and in other S. aureus-induced diseases.

14.
Biol Trace Elem Res ; 173(1): 116-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26779623

RESUMO

Selenium (Se), a nutritionally essential trace element, is associated with health and disease. Selenoprotein T (SelT) was identified as a redoxin protein with a selenocystein, localizing in the endoplasmic reticulum. The myosin light chain kinase (MLCK) and myosin light chain (MLC) play key roles in the contraction process of smooth muscle. The present study was to detect the effect and mechanism of SelT on the contraction process of gastric smooth muscle. The WT rats were fed with different Se concentration diets, and Se and Ca(2+) concentrations were detected in the gastric smooth muscle. Western blot and qPCR were performed to determine SelT, CaM, MLCK, and MLC expressions. MLCK activity was measured by identifying the rates of [γ-32P]ATP incorporated into the MLC. The results showed Se and Ca(2+) concentrations were enhanced with Se intake in gastric smooth muscle tissues. With increasing Se, SelT, CaM, MLCK and MLC expressions increased, and MLCK and MLC activation improved in gastric smooth muscle tissue. The SelT RNA interference experiments showed that Ca(2+) release, MLCK activation, and MLC phosphorylation were regulated by SelT. Se affected the gastric smooth muscle constriction by regulating Ca(2+) release, MLCK activation, and MLC phosphorylation through SelT. Se plays a major role in regulating the contraction processes of gastric smooth muscle with the SelT.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Selênio/farmacologia , Selenoproteínas/biossíntese , Animais , Ativação Enzimática/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Cadeias Leves de Miosina/biossíntese , Ratos , Ratos Wistar
15.
Int Immunopharmacol ; 27(1): 130-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939535

RESUMO

Mastitis, which commonly occurs during the postpartum period, is caused by the infection of the mammary glands. The most common infectious bacterial pathogen of mastitis is Staphylococcus aureus (S. aureus) in both human and animals. Brazilin, a compound isolated from the traditional herbal medicine Caesalpinia sappan L., has been shown to exhibit multiple biological properties. The present study was performed to determine the effect of brazilin on the inflammatory response in the mouse model of S. aureus mastitis and to confirm the mechanism of action involved. Brazilin treatment was applied in both a mouse model and cells. After brazilin treatment of cells, Western blotting and qPCR were performed to detect the protein levels and mRNA levels, respectively. Brazilin treatment significantly attenuated inflammatory cell infiltration and inhibited the expressions of TNF-α, IL-1ß and IL-6 in a dose-dependent manner. Administration of brazilin in mice suppressed S. aureus-induced inflammatory injury and the production of proinflammatory mediators. This suppression was achieved by reducing the increased expression of TLR2 and regulating the NF-κB and MAPK signaling pathways in the mammary gland tissues and cells with S. aureus-induced mastitis. These results suggest that brazilin appears to be an effective drug for the treatment of mastitis and may be applied as a clinical therapy.


Assuntos
Benzopiranos/administração & dosagem , Mastite/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Caesalpinia/imunologia , Células Cultivadas , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Mastite/imunologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Infecções Estafilocócicas/imunologia , Receptor 2 Toll-Like/genética
16.
Inflammation ; 38(3): 1142-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25487780

RESUMO

Mastitis is a major disease in humans and other animals and is characterized by mammary gland inflammation. It is a major disease of the dairy industry. Bergenin is an active constituent of the plants of genus Bergenia. Research indicates that bergenin has multiple biological activities, including anti-inflammatory and immunomodulatory properties. The objective of this study was to evaluate the protective effects and mechanism of bergenin on the mammary glands during lipopolysaccharide (LPS)-induced mastitis. In this study, mice were treated with LPS to induce mammary gland mastitis as a model for the disease. Bergenin treatment was initiated after LPS stimulation for 24 h. The results indicated that bergenin attenuated inflammatory cell infiltration and decreased the concentration of NO, TNF-α, IL-1ß, and IL-6, which were increased in LPS-induced mouse mastitis. Furthermore, bergenin downregulated the phosphorylation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway proteins in mammary glands with mastitis. In conclusion, bergenin reduced the expression of NO, TNF-α, IL-1ß, and IL-6 proinflammatory cytokines by inhibiting the activation of the NF-κB and MAPKs signaling pathways, and it may represent a novel treatment strategy for mastitis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Benzopiranos/uso terapêutico , Mastite/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/patologia , Mastite/imunologia , Mastite/patologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA