Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gene ; 887: 147741, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634881

RESUMO

Common bean (Phaseolus vulgaris L.) is a major legume crop worldwide, but its growth and development frequently face challenges due to abiotic stresses, particularly drought. Proper supplement of copper could mitigate the adverse effects of drought, but excessive accumulation of this metal in plants can be harmful. The suppressor of MAX2 1-like (SMXL) gene family, which plays important roles in various plant processes, including stress responses, remains poorly understood in common bean. In this study, we identified nine orthologues of SMXL genes in common bean, which are located on six chromosomes and classified into four subgroups. Basic molecular properties, including theoretical isoelectric point (PI), molecular weight (MW), grand average of hydropathicity (GVIO), gene structure, and conserved motifs were characterized, and numerous cis-elements in promoters were predicted. The expression patterns of PvSMXL genes were found to be distinct under 10% polyethylene glycol (PEG)-induced drought stress and 200 µM Cu treatments. Most PvSMXLs showed reduced expression in response to Cu treatment, whereas nearly half PvSMXLs exhibited inducible expression under drought stress. PvSMXL2, which exhibited a rapid response to karrikin 1 (KAR1), an active form of the plant growth regulators newly found in the smoke of burning plant material, was down-regulated by both PEG-induced drought and Cu stresses. Transient silencing of PvSMXL2 resulted in enhanced drought stress tolerance without conferring Cu tolerance. These findings provide valuable insights into the functions of SMXL genes in common bean under abiotic stress conditions.


Assuntos
Phaseolus , Phaseolus/genética , Phaseolus/metabolismo , Secas , Cobre/farmacologia , Polietilenoglicóis/farmacologia , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Zhongguo Gu Shang ; 35(9): 812-7, 2022 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-36124449

RESUMO

The expert consensus of the third-generation minimally invasive technical specification for hallux valgus was developed by Foot and Ankle Committee of Orthopaedic Branch of Chinese Medical Doctor Association, Foot and Ankle Committee of Sports Medicine Branch of Chinese Medical Doctor Association, and Foot and Ankle Expert Committee of Orthopedic Branch of Chinese Association of Integrative Medicine. The consensus was drawn from evidence-based medicine and experts' clinical experience to provide an academic guidance of the third-generation minimally invasive technical specification of hallux valgus for the orthopedic surgeons, including definition, indications, osteotomy techniques, post-operative rehabilitation and prognosis.


Assuntos
Joanete , Hallux Valgus , Ortopedia , Consenso , Hallux Valgus/cirurgia , Humanos , Osteotomia/métodos
3.
Biomolecules ; 9(12)2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766568

RESUMO

The invertase gene family in plants is composed of two subfamilies of enzymes, namely, acid- and neutral/alkaline invertases (cytosolic invertase, CIN). Both can irreversibly cleave sucrose into fructose and glucose, which are thought to play key roles in carbon metabolism and plant growth. CINs are widely found in plants, but little is reported about this family. In this paper, a comparative genomic approach was used to analyze the CIN gene family in Solanum, including Solanumtuberosum, Solanumlycopersicum, Solanumpennellii, Solanumpimpinellifolium, and Solanummelongena. A total of 40 CINs were identified in five Solanum plants, and sequence features, phylogenetic relationships, motif compositions, gene structure, collinear relationship, and expression profile were further analyzed. Sequence analysis revealed a remarkable conservation of CINs in sequence length, gene number, and molecular weight. The previously verified four amino acid residues (D188, E414, Arg430, and Ser547) were also observed in 39 out of 40 CINs in our study, showing to be deeply conserved. The CIN gene family could be distinguished into groups α and ß, and α is further subdivided into subgroups α1 and α2 in our phylogenetic tree. More remarkably, each species has an average of four CINs in the α and ß groups. Marked interspecies conservation and collinearity of CINs were also further revealed by chromosome mapping. Exon-intron configuration and conserved motifs were consistent in each of these α and ß groups on the basis of in silico analysis. Expression analysis indicated that CINs were constitutively expressed and share similar expression profiles in all tested samples from S. tuberosum and S.lycopersicum. In addition, in CIN genes of the tomato and potato in response to abiotic and biotic stresses, phytohormones also performed. Overall, CINs in Solanum were encoded by a small and highly conserved gene family, possibly reflecting structural and functional conservation in Solanum. These results lay the foundation for further expounding the functional characterization of CIN genes and are also significant for understanding the evolutionary profiling of the CIN gene family in Solanum.


Assuntos
Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Solanum/enzimologia , Solanum/genética , beta-Frutofuranosidase/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Éxons/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Tamanho do Genoma , Genoma de Planta , Íntrons/genética , Peso Molecular , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
4.
Sci Rep ; 8(1): 16628, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413778

RESUMO

Heat shock protein 70 (Hsp70) family members play important roles in protecting plants against abiotic stresses, including salt, drought, heat, and cold. In this study, 20 putative StHsp70 genes were identified in potato (Solanum tuberosum L.) through the integration of the gene structures, chromosome locations, phylogenetic relationships, and expression profiles. These StHsp70 genes were classified into five sub-families based on phylogenetic analysis. Chromosome mapping revealed that they were unevenly and unequally distributed on 10 of the 12 chromosomes. Furthermore, segmental and tandem duplication events contributed to the expansion of the StHsp70 genes. Phylogenetic tree of the HSP70 genes from potato and other plant species revealed multiple sub-families. These findings indicated a common ancestor which had generated diverse sub-families prior to a mono-dicot split. In addition, expression analysis using RNA-seq revealed that the majority of these genes were expressed in at least one of the tested tissue, and were induced by Phytophthora infestans. Then, based on qRT-PCR analysis, the results showed that the transcript levels of some of the StHsp70 genes could be remarkably induced by such abiotic and hormone stresses, which indicated their potential roles in mediating the responses of potato plants to both abiotic and biotic stress conditions.


Assuntos
Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA