Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155548, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583347

RESUMO

BACKGROUND: Oral leukoplakia (OLK), characterized by abnormal epithelial hyperplasia, is the most common precancerous oral mucosa lesion and is closely related to oxidative stress. Cucurbitacin B (CuB), a tetracyclic triterpenoid molecule derived from plants, has shown promising anti-proliferative and antioxidant effects in preclinical studies. However, whether CuB can play an antiproliferative role in OLK by regulating oxidative stress remains elusive. PURPOSE: To investigate the role of CuB in inhibiting the malignant progression of oral leukoplakia and to further explore its underlying mechanisms of action. METHODS: In vitro, the effect of CuB on the proliferation, migration, apoptosis, and cell cycle of OLK cells DOK was detected. The core genes and key pathways of OLK and CuB were analyzed in the transcriptome database, by using immunofluorescence, qRT-PCR, and Western blot to evaluate the expression levels of the ferroptosis markers ROS, GSH, MDA, Fe2+, and marker genes SLC7A11, GPX4, and FTH1. Immunohistochemistry of human tissue was performed to investigate the expression of the SLC7A11. In vivo, the model of OLK was established in C57BL/6 mice and the biosafety of CuB treatment for OLK was further evaluated. RESULTS: CuB substantially suppressed the proliferation of DOK cells. Bioinformatics analysis showed that the core targets of OLK crossing with CuB include SLC7A11 and that the essential pathways involve ROS and ferroptosis. In vitro experiments indicated that CuB might promote ferroptosis by down-regulating the expression of SLC7A11. We observed a gradual increase in SLC7A11 expression levels during the progression from normal oral mucosa to oral leukoplakia with varying degrees of epithelial dysplasia. In vivo experiments demonstrated that CuB inhibited the malignant progression of OLK by promoting ferroptosis in OLK mice and exhibited a certain level of biosafety. CONCLUSION: This study demonstrated for the first time that CuB could effectively inhibit the malignant progression of OLK by inducing ferroptosis via activating the SLC7A11/ mitochondrial oxidative stress pathway. These findings indicate that CuB could serve as the lead compound for the future development of anti-oral leukoplakia drugs.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Proliferação de Células , Ferroptose , Leucoplasia Oral , Mitocôndrias , Estresse Oxidativo , Triterpenos , Ferroptose/efeitos dos fármacos , Leucoplasia Oral/tratamento farmacológico , Animais , Estresse Oxidativo/efeitos dos fármacos , Triterpenos/farmacologia , Humanos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Masculino , Movimento Celular/efeitos dos fármacos
2.
Neuro Oncol ; 25(4): 720-732, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454228

RESUMO

BACKGROUND: Adamantinomatous craniopharyngioma (ACP) is a benign tumor with malignant clinical manifestations. ACP adjacent to the hypothalamus often presents with more severe symptoms and higher incidence of hypothalamic dysfunction. However, the mechanism underlying hypothalamic dysfunction remains unclear. METHODS: Immunostaining was performed to determine the nerve damage to the floor of the third ventricle (3VF) adjacent to ACP and to examine the recruitment and senescence of hypothalamic neural stem cells (htNSCs). The accumulation of lipid droplets (LDs) in htNSCs was evaluated via BODIPY staining, oil red O staining, and transmission electron microscopy. In vitro and in vivo assays were used to evaluate the effect of cystic fluid or oxidized low-density lipoprotein and that of oxytocin (OXT) on htNSC senescence and the hypothalamic function. The protein expression levels were analyzed using western blotting. RESULTS: htNSCs with massive LD accumulation were recruited to the damaged 3VF adjacent to ACP. The LDs in htNSCs induced senescence and reduced neuronal differentiation; however, htNSC senescence was effectively prevented by inhibiting either CD36 or integrated stress response (ISR) signaling. Furthermore, OXT pretreatment reduced lipotoxicity via the inhibition of ISR signaling and the repair of the blood-brain barrier. CONCLUSIONS: Reduced LD aggregation or ISR signaling inhibition prevented senescence in htNSCs and identified molecular pathways and potential therapeutic targets that may improve hypothalamic dysfunction in ACP patients.


Assuntos
Craniofaringioma , Células-Tronco Neurais , Neoplasias Hipofisárias , Humanos , Craniofaringioma/metabolismo , Neoplasias Hipofisárias/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Células-Tronco Neurais/patologia , Lipídeos
3.
Neural Plast ; 2018: 9506387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853854

RESUMO

Deafness is a common human disease, which is mainly caused by irreversible damage to hair cells and spiral ganglion neurons (SGNs) in the mammalian cochlea. At present, replacement of damaged or missing hair cells and SGNs by stem cell transplantation therapy is an effective treatment. However, the survival rate of stem cell transplantation is low, with uncontrollable differentiation hindering its application. Most researchers have focused on biochemical factors to regulate the growth and differentiation of stem cells, whereas little study has been performed using physical factors. This review intends to illustrate the current problems in stem cell-based treatment against deafness and to introduce electric field stimulation as a physical factor to regulate stem cell behavior and facilitate stem cell therapy to treat hearing loss in the future.


Assuntos
Surdez/terapia , Terapia por Estimulação Elétrica/métodos , Transplante de Células-Tronco/métodos , Animais , Terapia Combinada , Surdez/fisiopatologia , Células Ciliadas Auditivas/fisiologia , Humanos , Regeneração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA