Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomaterials ; 306: 122498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310828

RESUMO

Magnetic hyperthermia therapy (MHT) has garnered immense interest due to its exceptional spatiotemporal specificity, minimal invasiveness and remarkable tissue penetration depth. Nevertheless, the limited magnetothermal heating capability and the potential toxicity of metal ions in magnetic materials based on metallic elements significantly impede the advancement of MHT. Herein, we introduce the concept of nonmetallic materials, with graphite (Gra) as a proof of concept, as a highly efficient and biocompatible option for MHT of tumors in vivo for the first time. The Gra exhibits outstanding magnetothermal heating efficacy owing to the robust eddy thermal effect driven by its excellent electrical conductivity. Furthermore, being composed of carbon, Gra offers superior biocompatibility as carbon is an essential element for all living organisms. Additionally, the Gra boasts customizable shapes and sizes, low cost, and large-scale production capability, facilitating reproducible and straightforward manufacturing of various Gra implants. In a mouse tumor model, Gra-based MHT successfully eliminates the tumors at an extremely low magnetic field intensity, which is less than one-third of the established biosafety threshold. This study paves the way for the development of high-performance magnetocaloric materials by utilizing nonmetallic materials in place of metallic ones burdened with inherent limitations.


Assuntos
Grafite , Hipertermia Induzida , Neoplasias , Animais , Camundongos , Neoplasias/terapia , Campos Magnéticos
2.
Int J Biol Macromol ; 253(Pt 3): 126870, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37703966

RESUMO

Cancer drugs usually have side effects in chemotherapy. Apoptin, a protein recognized by its good therapeutical effect on tumors and innocuous to body, is employed to treat hepatocellular carcinoma (HCC). As our previous data shown, the efficiency of apoptin protein might be limited by the protein of apaf-1. Therefore, we designed the multi-functional nanoparticles (MFNPs) encapsulating apoptin and apaf-1 plasmids by layer-by layer assembly. The NPs could release drugs into tumor site specifically and had good compatibility to normal cells and tissues. The groups of biotin, ε-polylysine, and nuclear localization signal in MFNPs conferred NPs the capabilities to enter cancer cells specifically, escape lysosome and enter the nucleus, respectively. In vitro inhibition experiment and in vivo anti-tumor therapy confirmed MFNPs as an excellent carrier to treat HCC. In addition, the dual-drug system was superior to any of the single-drug system. The mechanism analysis proved that supplement of the protein of apaf-1 might enhance apoptosome formation, causing the increase of therapeutical efficacy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Proteínas do Capsídeo/genética , Apoptose , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA