Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3774-3785, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475069

RESUMO

In this study, the authors cloned a glycosyltransferase gene PpUGT2 from Paris polyphylla var. yunnanensis with the ORF length of 1 773 bp and encoding 590 amino acids. The phylogenetic tree revealed that PpUGT2 belonged to the UGT80A subfamily and was named as UGT80A49 by the UDP-glycosyltransferase(UGT) Nomenclature Committee. The expression vector pET28a-PpUGT2 was constructed, and enzyme catalytic reaction in vitro was conducted via inducing protein expression and extraction. With UDP-glucose as sugar donor and diosgenin and pennogenin as substrates, the protein was found with the ability to catalyze the C-3 hydroxyl ß-glycosylation of diosgenin and pennogenin. To further explore its catalytic characteristic, 15 substrates including steroids and triterpenes were selected and PpUGT2 showed its activity towards the C-17 position of sterol testosterone with UDP-glucose as sugar donor. Homology modelling and molecule docking of PpUGT2 with substrates predicted the key residues interacting with ligands. The re-levant residues of PpUGT2-ligand binding model were scanned to calculate the corresponding mutants, and the optimized mutants were obtained according to the changes in binding affinity of the ligand with protein and the surrounding residues within 5.0 Å of ligands, which had reference value for design of the mutants. This study laid a foundation for further exploring the biosynthetic pathway of polyphyllin as well as the structure of sterol glycosyltransferases.


Assuntos
Ascomicetos , Diosgenina , Liliaceae , Melanthiaceae , Ligantes , Glicosiltransferases/genética , Esteróis , Filogenia , Liliaceae/química , Açúcares , Glucose , Difosfato de Uridina
2.
Mol Biol Rep ; 50(3): 2137-2146, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36562935

RESUMO

BACKGROUND: Paris polyphylla var. yunnanensis is an important medicinal plant, and the main active ingredient of the plant is polyphyllin, which is a steroid saponin with pharmacological activities. The central enzyme genes participating in the biosynthesis of polyphyllin are increasingly being uncovered; however, UGTs are rarely illustrated. METHODS AND RESULTS: In this study, we cloned a new sterol glycosyltransferase from Paris polyphylla var. yunnanensis and identified its catalytic function in vitro. PpUGT6 showed the ability to catalyse the C-3 glycosylation of pennogenin sapogenin of polyphyllin, and PpUGT6 showed catalytic promiscuity towards steroids at the C-17 position of testosterone and methyltestosterone and the triterpene at the C-3 position of glycyrrhetinic acid. Homology modelling of the PpUGT6 protein and virtual molecular docking of PpUGT6 with sugar acceptors and donors were performed, and we predicted the key residues interacting with ligands. CONCLUSIONS: Here, PpUGT6, a novel sterol glycosyltransferase related to the biosynthesis of polyphyllin from P. polyphylla, was characterized. PpUGT6 catalysed C-3 glycosylation to pennogenin sapogenin of polyphyllin, which is the first glycosylation step of the biosynthetic pathway of polyphyllins. Interestingly, PpUGT6 demonstrated glycodiversification to testosterone and methyltestosterone at C-17 and triterpene of glycyrrhetinic acid at the C-3 position. The virtual molecular docking of PpUGT6 protein with ligands predicted the key residues interacting with them. This work characterized a novel SGT glycosylating pennogenin sapogenin at C-3 of polyphyllin from P. polyphylla and provided a reference for further elucidation of the phytosterol glycosyltransferases in catalytic promiscuity and key residues interacting with substrates.


Assuntos
Ácido Glicirretínico , Liliaceae , Sapogeninas , Esteróis , Glicosiltransferases/genética , Metiltestosterona , Ligantes , Simulação de Acoplamento Molecular , Esteroides/química , Liliaceae/química
3.
J Org Chem ; 87(1): 429-452, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34918517

RESUMO

The copper-catalyzed reductive Ireland-Claisen rearrangement of propargylic acrylates led to 3,4-allenoic acids. The use of silanes or pinacolborane as stoichiometric reducing agents and triethylphosphite as a ligand facilitated the divergent and complementary selectivity for the synthesis of diastereomeric anti- and syn-rearranged products, respectively. Copper-catalyzed reductive Ireland-Claisen rearrangement of allylic 2,3-allenoates proceeded effectively only when pinacolborane was used as a reductant to generate various 1,5-dienes in excellent yields and with good diastereoselectivities in some cases. Mechanistic studies showed that the silyl and boron enolates, rather than the copper enolate, underwent a stereospecific rearrangement via a chairlike transition state to afford the corresponding Claisen rearrangement products.


Assuntos
Acrilatos , Cobre , Catálise , Silanos , Estereoisomerismo
4.
Zhongguo Zhong Yao Za Zhi ; 44(16): 3588-3593, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31602927

RESUMO

Tripterygium wilfordii is a medicinal plant commonly used in the treatment of rheumatoid arthritis,and with pharmacological activities in anti-tumor and obesity treatment. The known active ingredients in T. wilfordii are mainly terpenoids,but with very low content. Therefore,the analysis of the biosynthesis pathway of terpenoids in T. wilfordii has become a research hotspot to solve the problem of its resources. Terpenoid synthase( TPS) is a key enzyme that catalyzes the formation of a wide variety of terpenoid skeletons. In this study,a gene fragment with an ORF of 1 785 bp was cloned from T. wilfordii. Bioinformatics analysis was performed using NCBI's BLASTP,ProtParam and Interpro online tools and MEGA 6.0 software. The response of this gene to methyl jasmonate was also detected by real-time fluorescent quantitative PCR,and its catalytic function was verified by prokaryotic expression and in vitro enzymatic assay. Bioinformatics analysis indicated that the amino acid sequence encoded by this gene had both N-terminal domain and C-terminal domain of TPS,as well as the DDxx D conserved domain of the class I of TPS family. And Tw MTS gathered together with TPS-b subfamily in the Neighbor-Joining Tree constructed with known homologous TPSs. The results of RT-PCR showed that 50 µmol·L-1 MeJA 12 h could increase the expression of Tw MTS to 735 times in the control group at 12 h,and 1 644 times at 24 h. In addition,in vitro enzymatic reaction results showed that Tw MTS can catalyze the production of ß-citronellol with GPP as substrate,indicating that Tw MTS was a monoterpene synthase. The above results provided a new element for the synthetic biology database of T. wilfordii terpenoids,and laid the foundation for future biosynthesis research.


Assuntos
Liases Intramoleculares/genética , Proteínas de Plantas/genética , Tripterygium/genética , Clonagem Molecular , Tripterygium/enzimologia
5.
Bioresour Technol ; 89(2): 171-6, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12699937

RESUMO

The bioeffects of selenium on the growth of Spirulina platensis and the selenium distribution were investigated. S. platensis was batch cultured in Zarrouk medium containing increasing concentrations of sodium selenite. The biotransformation characteristic of selenium was analysed by the determination of the detailed selenium distribution forms. At 35 degrees C, 315.2 microEm(-2) x s(-1), sodium selenite concentrations below 400 mg x l(-1) were found to stimulate algal growth, especially in the range of 0.5-40 mg x l(-1). However, above 500 mg x l(-1) sodium selenite was toxic to this alga with the toxicity being related to the sulfite level in the medium. S. platensis was found to resist higher selenite by reducing toxic Se(IV) to nonsoluble Se(0). Selenium was accumulated efficiently in S. platensis during cultivation with accumulated selenium increasing with selenite concentration in the medium. It was demonstrated that inorganic selenite could be transformed into organic forms through binding with protein, lipids and polysaccharides and other cell components. The organic selenium accounted for 85.1% of the total accumulated selenium and was comprised of 25.2% water-soluble protein-bound, 10.6% lipids-bound and 2.1% polysaccharides-bound selenium. Among the organic fractions lipid possessed the strongest ability to accumulate Se (6.47 mg x kg(-1)). The 14.9% inorganic selenium in S. platensis was composed of Se(IV) (13.7%) and Se(VI) (1.2%).


Assuntos
Cianobactérias/crescimento & desenvolvimento , Selênio/farmacologia , Selenito de Sódio/farmacologia , Biotransformação , Meios de Cultura , Cianobactérias/fisiologia , Polissacarídeos/química , Selênio/metabolismo , Selênio/farmacocinética , Selenito de Sódio/metabolismo , Selenito de Sódio/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA