Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172515, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642759

RESUMO

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.


Assuntos
Carvão Vegetal , Compostagem , Substâncias Húmicas , Nitrogênio , Fósforo , Fósforo/análise , Carvão Vegetal/química , Nitrogênio/análise , Compostagem/métodos , Microbiologia do Solo , Medicamentos de Ervas Chinesas/química , Solo/química
2.
J Hazard Mater ; 459: 132054, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37473569

RESUMO

Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.


Assuntos
Genes Bacterianos , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Sulfatos/farmacologia , Reatores Biológicos , Óxidos de Enxofre/farmacologia
3.
Bioresour Technol ; 232: 412-416, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28242205

RESUMO

This paper presents the results of an extended ASM2 model for the modeling and calibration of the role of extracellular polymeric substances (EPS) in phosphorus (P) removal in an anaerobic-aerobic process. In this extended ASM2 model, two new components, the bound EPS (XEPS) and the soluble EPS (SEPS), are introduced. Compared with the ASM2, 7.71, 8.53, and 9.28% decreases in polyphosphate (polyP) were observed in the extended ASM2 in three sequencing batch reactors feeding with different COD/P ratios, indicating that 7.71-9.28% of P in the liquid was adsorbed by EPS. Sensitive analysis indicated that, five parameters were the significant influential parameters and had been chosen for further model calibration by using the least square method to simulate by MATLAB. This extended ASM2 has been successfully established to simulate the output variables and provides a useful reference for the mathematic simulations of the role of EPS in biological phosphorus removal process.


Assuntos
Biopolímeros/química , Modelos Teóricos , Fósforo/isolamento & purificação , Adsorção , Aerobiose , Anaerobiose , Biodegradação Ambiental , Simulação por Computador , Cinética , Esgotos
4.
Bioresour Technol ; 216: 653-60, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27289056

RESUMO

The study provided a cost-effective and high-efficiency volatile fatty acid (VFA) production strategy by co-fermentation of food waste (FW) and excess sludge (ES) without artificial pH control. VFA production of 867.42mg COD/g-VS was obtained under the optimized condition: FW/ES 5, solid retention time 7d, organic loading rate 9g VS/L-d and temperature 40°C. Mechanism exploration revealed that the holistic biodegradability of substrate was greatly enhanced, and proper pH range (5.2-6.4) was formed by the high buffering capacity of the co-fermentation system itself, which effectively enhanced hydrolysis yield (63.04%) and acidification yield (83.46%) and inhibited methanogenesis. Moreover, microbial community analysis manifested that co-fermentation raised the relative abundances of hydrolytic and acidogenic bacteria including Clostridium, Sporanaerobacter, Tissierella and Bacillus, but suppressed the methanogen Anaerolineae, which also facilitated high VFA production. These results were of great guiding significance aiming for VFA recovery from FW and ES in large-scale.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Alimentos , Esgotos/microbiologia , Gerenciamento de Resíduos/métodos , Amônia/metabolismo , Bactérias Anaeróbias/metabolismo , Clostridium/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Metano/biossíntese , Consórcios Microbianos , Temperatura
5.
Bioresour Technol ; 177: 194-203, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25490102

RESUMO

An ozone/ultrasound lysis-cryptic growth technology combining a continuous flow anaerobic-anoxic-microaerobic-aerobic (AAMA+O3/US) system was investigated. Techno-economic evaluation and sludge lyses return ratio (r) optimization of this AAMA+O3/US system were systematically and comprehensively discussed. Economic assessment demonstrated that this AAMA+O3/US system with r of 30% (AAMA+O3/US2# system) was more economically feasible that can give a 14.04% saving of costs. In addition to economic benefits, a 55.08% reduction in sludge production, and respective 21.17% and 5.45% increases in TN and TP removal efficiencies were observed in this AAMA+O3/US2# system. Considering the process performances and economic benefits, r of 30% in AAMA+O3/US2# system was recommended. Excitation-emission matrix and Fourier transform infrared spectra analyses also proved that less refractory soluble microbial products were generated from AAMA+O3/US2# system. Improvement in 2,3,5-triphenyltetrazolium chloride electron transport system (TTC-ETS) activity in AAMA+O3/US2# further indicated that a lower sludge lyses return ratio stimulated the microbial activity.


Assuntos
Compostos Orgânicos/isolamento & purificação , Ozônio/química , Esgotos/química , Ultrassom/métodos , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Aerobiose , Compostos de Amônio/isolamento & purificação , Anaerobiose , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Transporte de Elétrons , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Sais de Tetrazólio/química , Fatores de Tempo
6.
J Environ Sci (China) ; 19(2): 129-34, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17915718

RESUMO

The lack and pollution of water resource make wastewater reuse necessary. The pilot scale long-term tests for submerged membrane bioreactor were conducted to treat the effluents of anaerobic or aerobic treatment process for the high-strength Chinese traditional medicine wastewater. This article was focused on the feasibility of the wastewater treatment and reuse at shorter hydraulic retention time (HRT) of 5.0, 3.2 and 2.13 h. MLSS growth, membrane flux, vacuum values and chemical cleaning periods were also investigated. The experimental results of treating two-phase anaerobic treatment effluent demonstrated that the CODfilt was less than 100 mg/L when the influent COD was between 500-10000 mg/L at HRT of 5.0 h, which could satisfy the normal discharged standard in China. The experimental results to treat cross flow aerobic reactor effluent demonstrated that the average value of CODfilt was 17.28 mg/L when the average value of influent COD was 192.84 mg/L at HRT of 2.13 h during 106 d, which could completely meet the normal standard for water reuse. The maximum MLSS and MLVSS reached 24000 and 14500 mg/L at HRT of 3.2 h respectively. Membrane flux had maximal resume degrees of 94.7% at vacuum value of 0.02 MPa after cleaning. Chemical cleaning periods of membrane module were 150 d. A simulation model of operational parameters was also established based on the theory of back propagation neural network and linear regression of traditional mathematical model. The simulation model showed that the optimum operational parameters were suggested as follows: HRT was 5.0 h, SRT was 100 d, the range of COD loading rate was between 10.664-20.451 kg/(m3xd), the range of MLSS was between 7543-13694 mg/L.


Assuntos
Reatores Biológicos , Resíduos Industriais , Medicina Tradicional Chinesa , Eliminação de Resíduos Líquidos/métodos , Simulação por Computador , Conservação dos Recursos Naturais , Membranas Artificiais , Redes Neurais de Computação , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA