Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0298194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625916

RESUMO

INTRODUCTION: Paeonia lactiflora contains diverse active constituents and exhibits various pharmacological activities. However, only partial identification of biologically active substances from P. lactiflora has been achieved using low-throughput techniques. Here, the roots of P. lactiflora, namely, Fenyunu (CK), Dafugui (DFG), and Red Charm (HSML), were studied. The primary and secondary metabolites were investigated using ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESIMS/MS). METHODS: The chemical compounds and categories were detected using broadly targeted UPLC-MS/MS. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and hierarchical clustering analysis (HCA) were carried out for metabolites of different varieties of P. lactiflora. RESULTS: A total of 1237 compounds were detected and classified into 11 categories. HCA, PCA, and OPLS-DA of these metabolites indicated that each variety of P. lactiflora was clearly separated from the other groups. Differential accumulated metabolite analysis revealed that the three P. lactiflora varieties contained 116 differentially activated metabolites (DAMs) involved in flavonoid, flavone, and flavonol metabolism. KEGG pathway analysis revealed that, in 65 pathways, 336 differentially abundant metabolites (DMs) were enriched in the CK and DFG groups; moreover, the type and content of terpenoids were greater in the CK group than in the DFG group. The CK and HSML groups contained 457 DMs enriched in 61 pathways; the type and amount of flavonoids, terpenoids, and tannins were greater in the CK group than in the HSML group. The DFG and HSML groups contained 497 DMs enriched in 65 pathways; terpenoids and alkaloids were more abundant in the HSML variety than in the DFG variety. CONCLUSIONS: A total of 1237 compounds were detected, and the results revealed significant differences among the three P. lactiflora varieties. Among the three P. lactiflora varieties, phenolic acids and flavonoids composed the largest and most diverse category of metabolites, and their contents varied greatly. Therefore, CK is suitable for medicinal plant varieties, and DFG and HSML are suitable for ornamental plant varieties. Twelve proanthocyanidin metabolites likely determined the differences in color among the three varieties.


Assuntos
Paeonia , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Flavonoides/química , Cromatografia Líquida de Alta Pressão/métodos , Terpenos/metabolismo
2.
PeerJ ; 11: e15883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663289

RESUMO

The Apetala2 (AP2) gene family of transcription factors (TFs) play important functions in plant development, hormonal response, and abiotic stress. To reveal the biological functions and the expression profiles of AP2 genes in Hypericum perforatum, genome-wide identification of HpAP2 family members was conducted. Methods: We identified 21 AP2 TFs in H. perforatum using bioinformatic methods; their physical and chemical properties, gene structures, conserved motifs, evolutionary relationships, cis-acting elements, and expression patterns were investigated. Results: We found that based on the structural characteristics and evolutionary relationships, the HpAP2 gene family can be divided into three subclasses: euANT, baselANT, and euAP2. A canonical HpAP2 TF shared a conserved protein structure, while a unique motif 6 was found in HpAP2_1, HpAP2_4, and HpAP2_5 from the euANT subgroup, indicating potential biological and regulatory functions of these genes. Furthermore, a total of 59 cis-acting elements were identified, most of which were associated with growth, development, and resistance to stress in plants. Transcriptomics data showed that 57.14% of the genes in the AP2 family were differentially expressed in four organs. For example, HpAP2_18 was specifically expressed in roots and stems, whereas HpAP2_17 and HpAP2_11 were specifically expressed in leaves and flowers, respectively. HpAP2_5, HpAP2_11, and HpAP2_18 showed tissue-specific expression patterns and responded positively to hormones and abiotic stresses. Conclusion: These results demonstrated that the HpAP2 family genes are involved in diverse developmental processes and generate responses to abiotic stress conditions in H. perforatum. This article, for the first time, reports the identification and expression profiles of the AP2 family genes in H. perforatum, laying the foundation for future functional studies with these genes.


Assuntos
Antineoplásicos , Hypericum , Hypericum/genética , Evolução Biológica , Biologia Computacional , Flores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA