RESUMO
ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism, and abnormally high expression of ACLY occurs in many diseases, including cancers, dyslipidemia and cardiovascular diseases. ACLY inhibitors are prospective treatments for these diseases. However, the scaffolds of ACLY inhibitors are insufficient with weak activity. The discovery of inhibitors with structural novelty and high activity continues to be a research hotpot. Acanthopanax senticosus (Rupr. & Maxim.) Harms is used for cardiovascular disease treatment, from which no ACLY inhibitors have ever been found. In this work, we discovered three novel ACLY inhibitors, and the most potent one was isochlorogenic acid C (ICC) with an IC50 value of 0.14 ± 0.04 µM. We found dicaffeoylquinic acids with ortho-dihydroxyphenyl groups were important features for inhibition by studying ten phenolic acids. We further investigated interactions between the highly active compound ICC and ACLY. Thermal shift assay revealed that ICC could directly bind to ACLY and improve its stability in the heating process. Enzymatic kinetic studies indicated ICC was a noncompetitive inhibitor of ACLY. Our work discovered novel ACLY inhibitors, provided valuable structure-activity patterns and deepened knowledge on the interactions between this targe tand its inhibitors.
Assuntos
ATP Citrato (pro-S)-Liase , Eleutherococcus , Eleutherococcus/química , Estrutura Molecular , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/química , Ácido Clorogênico/farmacologia , Ácido Clorogênico/isolamento & purificação , Ácido Clorogênico/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Ácido Quínico/isolamento & purificação , Ácido Quínico/química , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/isolamento & purificação , Hidroxibenzoatos/química , Relação Estrutura-AtividadeRESUMO
Fuke Qianjin capsules (FKQJ) exhibit obvious advantages and characteristics in the treatment of pelvic inflammatory disease. At present, information regarding the in vivo process of FKQJ is lacking, which has become a bottleneck in further determining the therapeutic effect of this traditional Chinese medicine. In the present study, a sensitive, simple and reliable method was developed and validated for the simultaneous quantification of 12 main components (4 flavonoids, 4 alkaloids, 2 phthalides and 2 diterpene lactones) in plasma and seven tissues of rats to study the pharmacokinetic and distribution characteristics of these components in vivo by using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the first time. Plasma and tissue were prepared by protein precipitation with acetonitrile and methanol, followed by its separation on a Waters Acquity UPLC BEH C18 column. The quantification was performed via multiple reaction monitoring (MRM) by a triple quadrupole mass spectrometer under positive electrospray ionization (ESI) mode. The method was validated to demonstrate its selectivity, linearity, accuracy, precision, recovery, matrix effect and stability. For 12 analytes, the low limit of quantification (LLOQs) reached 0.005-2.44â¯ng/mL, and all calibration curves showed good linearity (r2 ≥ 0.990) in linear ranges. The intra-day and inter-day precision (relative standard deviation) for all analytes was less than 14.96%, and the accuracies were in the range of 85.29%-114.97%. Extraction recoveries and matrix effects of analytes were acceptable. The pharmacokinetic results showed that the main components could be absorbed quickly, had a short residence time, and were eliminated quickly in vivo. At different time points, the 12 components were widely distributed with uneven characteristics in the body, which tended to be distributed in the liver, kidney and lung and to a lesser extent in the uterus, brain and heart. The pharmacokinetic process and tissue distribution characteristics of FKQJ were expounded in this study, which can provide a scientific theory for in-depth development of FKQJ and guide FKQJ use in the clinic.
Assuntos
Medicamentos de Ervas Chinesas , Feminino , Ratos , Animais , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Probiotic fermentation is a promising strategy for improving the nutritional and functional properties of traditional Chinese medicines (TCMs). Ganoderma lucidum and Raphani Semen are famous TCMs that have been shown to help alleviate immune system disorders. However, few studies have experimentally investigated the effects of probiotic-fermented G.lucidum and Raphani Semen on the immune system. PURPOSE: We established the in vitro fermentation of G. lucidum and Raphani Semen with a probiotic mixture (Bifidobacterium longum, Lactobacillus acidophilus, and l. fermentum) (GRFB), investigated its ameliorating effect against cyclophosphamide (CTX)-induced immunosuppression, and explored its possible mechanisms. METHODS: First, the different components in GRFB were identified by high-performance liquid chromatography. Second, its immune-stimulatory activities were evaluated in CTX-treated mice. Lastly, its possible in vitro and in vivo mechanisms were studied. RESULTS: Probiotic fermentation of G. lucidum and Raphani Semen altered some of its chemical constituents, potentially helping improve the ability of GRFB to alleviate immunosuppression. As expected, GRFB effectively ameliorated CTX-induced immunosuppression by increasing the number of splenic lymphocytes and regulating the secretion of serum and ileum cytokines. GRFB supplementation also effectively improved intestinal integrity in CTX-treated mice by upregulating tight junction proteins. It also protects against CTX-induced intestinal dysbiosis by increasing the abundance of beneficial bacteria and reducing the abundance of harmful bacteria. GRFB could directly promote intestinal immunity but not systemic immunity in vitro, suggesting a microbiota-dependent regulation of GRFB. Interestingly, cohousing CTX-induced immunosuppressed mice with GRFB-treated mice promoted their symptoms recovery. Enhanced CTX-induced immunosuppression by GRFB in vitro depended on the gut microbiota. Remarkably, a Kyoto Encyclopedia of Genes and Genomes analysis showed that the GRFB-reprogrammed microbiota was significantly enriched in DNA damage repair pathways, which contribute to repairing the intestinal mucosal barrier. CONCLUSION: This is the first study to suggest that compare with unfermented G. lucidum and Raphani Semen, GRFB can more effectively promote intestinal immunity and manipulate the gut microbiota to promote immunostimulatory activity and repair immunosuppression-induced intestinal barrier damage by biotransforming G.lucidum and Raphani Semen components.
Assuntos
Microbioma Gastrointestinal , Probióticos , Reishi , Animais , Camundongos , Fermentação , Probióticos/farmacologia , Probióticos/uso terapêutico , Ciclofosfamida/efeitos adversos , Imunidade , Terapia de Imunossupressão , SementesRESUMO
Ziziphi Spinosae Semen is the dried seeds of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou, and its extract has broad application prospects in the development of sleep-aid functional foods. However, the quality parameters of Ziziphi Spinosae Semen extracts currently available in the market are not uniform and there is a lack of unified standards. Therefore, it is important to establish an accurate and comprehensive method for quality evaluation. In view of the problems that the UV responses of flavonoids and saponins in the Ziziphi Spinosae Semen extracts vary dramatically and the saponin content in Ziziphi Spinosae Semen water extract is very low, high performance liquid chromatography (HPLC) was used to establish the fingerprint and quantify spinosin. The separation was carried out on a Waters XSelect HSS C18 column (250 mm×4.6 mm, 5 µm), and the mobile phase was acetonitrile-0.1% (v/v) phosphoric acid aqueous solution for gradient elution. The eight common peaks in the fingerprint of the Ziziphi Spinosae Semen extracts, identified by HPLC-quadrupole time-of-flight mass spectrometry, were attributed to flavonoids by reference substance identification, literature comparison, and high-resolution mass spectrometry data analysis. Semi-quantitative analysis of seven flavonoids and quantitative analysis of spinosin were conducted using the established HPLC quantitative fingerprint. The contents of jujuboside A and jujuboside B were determined by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry. Chromatographic separation was performed on a Waters ACQUITY UPLC BEH C18 column (50 mm×2.1 mm, 1.7 µm) by gradient elution using a mobile phase of acetonitrile-0.1%(v/v) formic acid aqueous solution. The target compounds were analyzed in multiple reaction monitoring mode with positive electrospray ionization. The semi-quantitative and quantitative data of the above-mentioned 10 components are displayed in the form of radar. Using the above methods, three batches of Ziziphi Spinosae Semen water extracts prepared in the laboratory and 15 batches of extract samples obtained from 15 suppliers were analyzed and compared. The results showed that although the raw materials of three batches of Ziziphi Spinosae Semen water extracts prepared in the laboratory were from different enterprises, the overall difference was not significant. However, the component contents of the samples provided by different manufacturers were greatly different, suggesting that there are some problems associated with the different manufacturers, such as dilution of excipients, adulteration of Ziziphi Mauritianae Semen, alcohol extraction, purification, and enrichment. For example, the representative composition contents in the Ziziphi Spinosae Semen extracts obtained from manufacturers B, C, E, F, G, H, I, and O were low, which were approximately 1/10 of corresponding contents in the normal water extracts prepared in the laboratory. It is speculated that to reduce the unit price of the product, the manufacturer used fewer raw materials or a large number of auxiliary materials to dilute the Ziziphi Spinosae Semen extracts. The contents of some flavonoids in the Ziziphi Spinosae Semen extract from manufacturer N were slightly higher than that in the self-preparation Ziziphi Spinosae Semen water extract, but it did not contain jujuboside A; thus, it was speculated that the Ziziphi Mauritianae Semen might be used for extraction. The contents of 10 components in the Ziziphi Spinosae Semen extract obtained from manufacturer D were all higher than the corresponding ones in the self-preparation Ziziphi Spinosae Semen water extract. Combined with the quality label of total saponin content > 20% and poor water solubility, it was speculated that the product might be prepared by alcohol extraction or purified and enriched by using resin. These results provided the basis for the enterprise to establish internal control quality standards for Ziziphi Spinosae Semen extracts and to select qualified suppliers.
Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Sementes , SêmenRESUMO
Ginseng extracts are rich in a variety of ginseng monomer saponins, which have pharmacological functions of retarding aging, enhancing immunity, stimulating blood circulation, and lowering blood pressure. Ginseng is widely used in health products and dietary supplements in the domestic and foreign market. However, the amount of pesticide residues is an important index for measuring the quality of ginseng and ginseng extracts. Therefore, studies focused on methods for the removal of pesticide residues in ginseng extract are of great significance. Hydrophilic interaction liquid chromatography (HILIC) is used to improve the retention and separation selectivity of strongly polar substances, and it is widely employed in drug analysis, metabolomics, proteomics, etc. In this study, a method for the removal of pesticide residues was developed based on the difference in the retention behavior of pesticide residues and ginsenosides on the HILIC column. Using commercially available ginsenoside extracts, the retention behaviors of pesticide residues and ginsenosides on reverse chromatography and hydrophilic chromatographic columns were evaluated by high performance liquid chromatography. The results proved that on the reversed-phase liquid chromatography (RPLC) stationary phase, in addition to the strong retentions of quintozene and pentachloroaniline, which could be clearly separated from the saponins, the retentions of the other five pesticide residues including carbendazim, azoxystrobin, procymidone, iprodione and propiconazole were similar to total ginsenosides. The seven ginsenosides showed strong retention due to the formation of hydrogen bonds between the hydroxyl groups on the sugar chain and the carboxyl groups on the HILIC stationary phase. However, the pesticide residues were not well retained because of their poor hydrophilicity and small molecular weights. For this reason, the pesticide residues and ginsenosides could be completely separated on the HILIC column. Thus, enrichment of the seven ginsenosides and removal of the 14 pesticide residues was realized in one step on the HILIC column. In addition, the effects of loading amount, loading volume, and washing volume on the removal of pesticide residues in ginsenosides were investigated using the Click XIon SPE column. Then, taking the ginsenoside recoveries and pesticide residue removal rates into account, we confirmed the following: the ratio of the maximum sample loading mass to the filler mass was 1â¶10; the optimal elution volume was twice the column volume; and the optimal loading volume was twice the column volume. The ginseng extracts were solvated with a 95% ethanol solution and loaded onto an HILIC column. The sample was subjected to pesticide residue removal, and ginsenoside purification and enrichment under the optimum removal conditions. Gradient elution was carried out using ethanol and water as the mobile phases. The total ginsenoside content in the final extracts was increased to 69.61%. The recovery of the total ginsenosides was 94.4%. The pesticide residues in the samples were quantitatively detected by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) in the multiple reaction monitoring (MRM) mode. The 14 pesticide residues in the original ginsenoside extracts were effectively removed. The amounts of five residues were reduced to below 0.05 mg/kg, while the other nine residues were completely eliminated. This study demonstrates the application of HILIC to pesticide residue removal in traditional Chinese medicine extracts and reveals a new technique for the purification of natural products. The proposed method shows a high removal rate of pesticide residues and a high recovery of total ginsenosides. It is safe, efficient, and environment-friendly, and can aid the development of high-quality ginsenoside extracts.
Assuntos
Ginsenosídeos , Panax , Resíduos de Praguicidas , Extratos Vegetais/análise , Cromatografia Líquida de Alta Pressão , Contaminação de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Ginsenosídeos/análise , Interações Hidrofóbicas e Hidrofílicas , Panax/química , Resíduos de Praguicidas/isolamento & purificação , Espectrometria de Massas em TandemRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Dopamine receptors are long-standing primary targets in the treatment of mental diseases and there is growing evidence that suggests relationships between obesity and the dopamine system, especially dopamine D1 and D2 receptors. Leaves of Nelumbo nucifera Gaertn. (lotus leaves) have been medically used for helping long-term maintenance of weight loss. Whether and how components of lotus leaves function through the dopamine receptors remains unclear. AIM OF THE STUDY: This work aimed to discover dopamine receptor-active alkaloids isolated from the lotus leaves, to evaluate their potencies and to analyze their structure activity relationship. MATERIALS AND METHODS: Dried lotus leaves were prepared and total extract was divided into alkaloids and flavones. Eight alkaloids were separated and characterized by a combination of high-performance liquid chromatography, quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance, and assayed by a fluorometric imaging plate reader platform. Human embryonic kidney 239 cell lines expressing dopamine D1, D2 and serotonin 2A (5-HT2A) receptors, respectively, were cultured and used in the assay. RESULTS: Alkaloids in the lotus leaves were the bioactive phytochemicals and inhibited dopamine from accessing the D1 and D2 receptors. All eight compounds functioned as D1-receptor antagonists and except N-nornuciferine, seven alkaloids functioned as D2-receptor antagonists. (S)-coclaurine and (R)-coclaurine are optical isomers and antagonized both D1 and D2 with equivalent potencies, suggesting that the optical rotation of the methylene linker in the monobenzyl isoquinoline backbone did not influence their activity. Among the eight alkaloids, O-nornuciferine was the potent antagonist to both receptors (the lowest IC50 values, D1: 2.09 ± 0.65 µM and D2: 1.14 ± 0.10 µM) while N-nornuciferine was found to be the least potent as it moderately antagonized D1 and was inactive on D2. O-nornuciferine was also a 5-HT2A antagonist (IC50~20 µM) while N-nornuciferine had no activity. These hinted the importance of a methyl group attached to the nitrogen atom in the aporphine backbone. Armepavine showed a nearly 10-fold selectivity to D2. CONCLUSIONS: In this work, eight alkaloids were isolated from the leaves of Nelumbo nucifera Gaertn. and assayed on the D1 and D2 receptors. They were D1/D2 antagonists with IC50 values in the mid- to low-micromolar range and O-nornuciferine was the most potent alkaloid among the eight. This family of alkaloids was biochemically evaluated on the dopamine receptors by the same platform for the first time.
Assuntos
Alcaloides/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Nelumbo/química , Extratos Vegetais/química , Folhas de Planta/química , Receptores de Dopamina D1/antagonistas & inibidores , Alcaloides/química , Dopamina , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Haloperidol , Humanos , Compostos Fitoquímicos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismoRESUMO
A new optimization strategy for purification of alkaloids from Rhizoma Corydalis using preparative liquid chromatography was developed, featuring a selective separation of different types of alkaloids into different parts by a reversed-phase/weak cation-exchange mixed-mode column (named C18WCX) at first. The total alkaloids of Rhizoma Corydalis were divided into four fractions with fraction III and IV corresponding to the tertiary type medium bases and the quaternary type strong bases, respectively. For fraction III, a conventional C18 column was used to isolate tertiary alkaloids using acetonitrile and 0.1% phosphoric acid (adjusted with triethylamine to pHâ¯6.0) as mobile phases. High selectivity and symmetrical peak shapes of tertiary alkaloids were obtained, resulting in six main tertiary alkaloids isolated in a single run. As strong bases, quaternary alkaloids often suffer from serious peak tailing problem on conventional C18 columns. Therefore, a silica-based strong cation-exchange (SCX) column was used for purification of fraction IV. On the SCX column, good peak shapes in high sample loading were achieved. Five main quaternary alkaloids were isolated and identified from the fraction in one-step. The procedures presented effective for the preparative isolation and purification of alkaloids from Rhizoma Corydalis.
Assuntos
Alcaloides/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Cromatografia de Fase Reversa/métodos , Corydalis/química , Medicamentos de Ervas Chinesas/química , Alcaloides/química , Cátions , Cromatografia por Troca Iônica/instrumentação , Cromatografia de Fase Reversa/instrumentaçãoRESUMO
Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.
Assuntos
Arabidopsis/metabolismo , Basidiomycota/metabolismo , Endófitos/metabolismo , Flores/metabolismo , Giberelinas/biossíntese , Raízes de Plantas/metabolismo , Arabidopsis/microbiologia , Flores/microbiologia , Raízes de Plantas/microbiologiaRESUMO
Saponins are widely distributed in the plant kingdom and have been shown to be active components of many medicinal herbs. In this study, a two-dimensional purification method based on reversed-phase liquid chromatography coupled with hydrophilic interaction liquid chromatography was successfully applied to purify saponins from leaves of Panax notoginseng. Nine saponin reference standards were used to test the separation modes and columns. The standards could not be resolved using C18 columns owing to their limited polar selectivity. However, they were completely separated on a XAmide column in hydrophilic interaction liquid chromatography mode, including two pairs of standards that were coeluted on a C18 column. The elution order of the standards on the two columns was sufficiently different, with a correlation coefficient between retention times on the C18 and XAmide columns of 0.0126, indicating good column orthogonality. Therefore, the first-dimension preparation was performed on a C18 column, followed by a XAmide column that was used to separate the fractions in the second dimension. Fifty-four fractions were prepared in the first dimension, with 25 fractions rich in saponins. Eight saponins, including two pairs of isomeric saponins and one new saponin, were isolated and identified from three representative fractions. This procedure was shown to be an effective approach for the preparative isolation and purification of saponins from leaves of P. notoginseng. Moreover, this method could possibly be employed in the purification of low-content and novel active saponins from natural products.