Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641403

RESUMO

The use of natural surfactants including plant extracts, plant hydrocolloids and proteins in nanoemulsion systems has received commercial interest due to demonstrated safety of use and potential health benefits of plant products. In this study, a whey protein isolate (WPI) from a byproduct of cheese production was used to stabilize a nanoemulsion formulation that contained hempseed oil and the Aesculus hippocastanum L. extract (AHE). A Box-Behnken experimental design was used to set the formulation criteria and the optimal nanoemulsion conditions, used subsequently in follow-up experiments that measured specifically emulsion droplet size distribution, stability tests and visual quality. Regression analysis showed that the concentration of HSO and the interaction between HSO and the WPI were the most significant factors affecting the emulsion polydispersity index and droplet size (nm) (p < 0.05). Rheological tests, Fourier transform infrared spectroscopy (FTIR) analysis and L*a*b* color parameters were also taken to characterize the physicochemical properties of the emulsions. Emulsion systems with a higher concentration of the AHE had a potential metabolic activity up to 84% in a microbiological assay. It can be concluded from our results that the nanoemulsion system described herein is a safe and stable formulation with potential biological activity and health benefits that complement its use in the food industry.


Assuntos
Aesculus/química , Cannabis/química , Emulsões , Nanoestruturas/química , Extratos Vegetais/química , Tensoativos/química , Proteínas do Soro do Leite/química , Reologia , Água/química
2.
Sci Rep ; 11(1): 72, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420136

RESUMO

Emerging formulation technologies aimed to produce nanoemulsions with improved characteristics, such as stability are attractive endeavors; however, comparisons between competing technologies are lacking. In this study, two formulation techniques that employed ultrasound and microfluidic approaches, respectively, were examined for relative capacity to produce serviceable oil in water nanoemulsions, based on hempseed oil (HSO). The ultrasound method reached > 99.5% entrapment efficiency with nanoemulsions that had an average droplet size (Z-Ave) < 180 nm and polydispersity index (PDI) of 0.15 ± 0.04. Surfactant concentration (% w/v) was found to be a significant factor (p < 0.05) controlling the Z-Ave, PDI and zeta potential of these nanoparticles. On the other hand, the microfluidic approach produced smaller particles compared to ultrasonication, with good stability observed during storage at room temperature. The Z-Ave of < 62.0 nm was achieved for microfluidic nanoemulsions by adjusting the aqueous : organic flow rate ratio and total flow rate at 4:1 and 12 mL/min, respectively. Further analyses including a morphology examination, a simulated gastrointestinal release behavior study, transepithelial transport evaluations and a toxicity test, using a Caco2-cell model, were performed to assess the functionality of the prepared formulations. The results of this study conclude that both approaches of ultrasound and microfluidics have the capability to prepare an HSO-nanoemulsion formulation, with acceptable characteristics and stability for oral delivery applications.


Assuntos
Extratos Vegetais/administração & dosagem , Administração Oral , Cannabis , Emulsões , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Microfluídica/métodos , Nanoestruturas , Ultrassom/métodos
3.
Sci Rep ; 10(1): 10567, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601363

RESUMO

The seed of the hemp plant (Cannabis sativa L.) has been revered as a nutritional resource in Old World Cultures. This has been confirmed by contemporary science wherein hempseed oil (HSO) was found to exhibit a desirable ratio of omega-6 and omega-3 polyunsaturated fatty acids (PUFAs) considered optimal for human nutrition. HSO also contains gamma-linoleic acid (GLA) and non-psychoactive cannabinoids, which further contribute to its' potential bioactive properties. Herein, we present the kinetics of the thermal stability of these nutraceutical compounds in HSO, in the presence of various antioxidants (e.g. butylated hydroxytoluene, alpha-tocopherol, and ascorbyl palmitate). We focussed on oxidative changes in fatty acid profile and acidic cannabinoid stability when HSO was heated at different temperatures (25 °C to 85 °C) for upto 24 h. The fatty acid composition was evaluated using both GC/MS and 1H-NMR, and the cannabinoids profile of HSO was obtained using both HPLC-UV and HPLC/MS methods. The predicted half-life (DT50) for omega-6 and omega-3 PUFAs in HSO at 25 °C was about 3 and 5 days, respectively; while that at 85 °C was about 7 and 5 hours respectively, with respective activation energies (Ea) being 54.78 ± 2.36 and 45.02 ± 2.87 kJ/mol. Analysis of the conjugated diene hydroperoxides (CDH) and p-Anisidine value (p-AV) revealed that the addition of antioxidants significantly (p < 0.05) limited lipid peroxidation of HSO in samples incubated at 25-85 °C for 24 h. Antioxidants reduced the degradation constant (k) of PUFAs in HSO by upto 79%. This corresponded to a significant (p < 0.05) increase in color stability and pigment retention (chlorophyll a, chlorophyll b and carotenoids) of heated HSO. Regarding the decarboxylation kinetics of cannabidiolic acid (CBDA) in HSO, at both 70 °C and 85 °C, CBDA decarboxylation led to predominantly cannabidiol (CBD) production. The half-life of CBDA decarboxylation (originally 4 days) could be increased to about 17 days using tocopherol as an antioxidant. We propose that determining acidic cannabinoids decarboxylation kinetics is a useful marker to measure the shelf-life of HSO. The results from the study will be useful for researchers looking into the thermal treatment of hempseed oil as a functional food product, and those interested in the decarboxylation kinetics of the acidic cannabinoids.


Assuntos
Antioxidantes/farmacologia , Cannabis/química , Peroxidação de Lipídeos/efeitos dos fármacos , Antioxidantes/análise , Canabidiol/metabolismo , Canabinoides/análise , Canabinoides/metabolismo , Canabinol/análogos & derivados , Canabinol/metabolismo , Clorofila A/metabolismo , Cromatografia Líquida de Alta Pressão , Descarboxilação , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Cinética , Óleos de Plantas/química , Sementes/química , Vitamina E/análise
4.
Molecules ; 25(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532010

RESUMO

In this study, two saponins-rich plant extracts, viz. Saponaria officinalis and Quillaja saponaria, were used as surfactants in an oil-in-water (O/W) emulsion based on hempseed oil (HSO). This study focused on a low oil phase content of 2% v/v HSO to investigate stable emulsion systems under minimum oil phase conditions. Emulsion stability was characterized by the emulsification index (EI), centrifugation tests, droplet size distribution as well as microscopic imaging. The smallest droplets recorded by dynamic light scattering (droplets size v. number), one day after the preparation of the emulsion, were around 50-120 nm depending the on use of Saponaria and Quillaja as a surfactant and corresponding to critical micelle concentration (CMC) in the range 0-2 g/L. The surface and interfacial tension of the emulsion components were studied as well. The effect of emulsions on environmental bacteria strains was also investigated. It was observed that emulsions with Saponaria officinalis extract exhibited slight toxic activity (the cell metabolic activity reduced to 80%), in contrast to Quillaja emulsion, which induced Pseudomonas fluorescens ATCC 17400 growth. The highest-stability samples were those with doubled CMC concentration. The presented results demonstrate a possible use of oil emulsions based on plant extract rich in saponins for the food industry, biomedical and cosmetics applications, and nanoemulsion preparations.


Assuntos
Cannabis/química , Emulsões , Extratos Vegetais/farmacologia , Óleos de Plantas/química , Pseudomonas fluorescens/crescimento & desenvolvimento , Rosaceae/química , Saponinas/farmacologia , Pseudomonas fluorescens/efeitos dos fármacos
5.
Molecules ; 24(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775277

RESUMO

In this paper, we present the possibility of using pea protein isolates as a stabilizer for hempseed oil (HSO)-based water/oil emulsions in conjunction with lecithin as a co-surfactant. A Box-Behnken design was employed to build polynomial models for optimization of the ultrasonication process to prepare the emulsions. The stability of the system was verified by droplet size measurements using dynamic light scattering (DLS) as well as centrifugation and thermal challenge tests. The z-ave droplet diameters of optimized emulsion were 209 and 207 nm after preparation and 1 week storage, respectively. The concentration of free Linoleic acid (C18:2; n-6) was used for calculation of entrapment efficiency in prepared nanoemulsions. At optimum conditions of the process, up to 98.63% ± 1.95 of entrapment was achieved. FTIR analysis and rheological tests were also performed to evaluate the quality of oil and emulsion, and to verify the close-to-water like behavior of the prepared samples compared to the viscous nature of the original oil. Obtained results confirmed the high impact of lecithin and pea protein concentrations on the emulsion droplet size and homogeneity confirmed by microscopic imaging. The presented results are the first steps towards using hempseed oil-based emulsions as a potential food additive carrier, such as flavor. Furthermore, the good stability of the prepared nanoemulsion gives opportunities for potential use in biomedical and cosmetic applications.


Assuntos
Emulsões/química , Aditivos Alimentares/química , Proteínas de Ervilha/química , Tensoativos/química , Difusão Dinâmica da Luz , Lecitinas/química , Nanoestruturas/química , Tamanho da Partícula , Reologia , Tensoativos/farmacologia , Viscosidade , Água/química
6.
Fitoterapia ; 127: 96-100, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29421243

RESUMO

Three new aporphine alkaloids, xylopialoids A-C (1-3), along with three known aporphine alkioids (4-6) and three other known compounds (7-9) were isolated from the roots of Xylopia vielana. Among these three new aporphine alkaloids, xylopialoid C (3) showed a special carbamido group directly connected to the nitrogen. The chemical structures of these nine compounds were determined by a combination of 1D and 2D NMR, MS, CD spectrum and Cu Kα X-ray crystallographic analyses. All these six alkaloids were firstly tested for the inhibitory activities against the production of NO in RAW264.7 cells stimulated by lipopolysaccharide (LPS). Among these compounds, 4 showed a potential inhibitory activity against the production of nitric oxide with IC50 value of 1.39 µM.


Assuntos
Alcaloides/isolamento & purificação , Anti-Inflamatórios/isolamento & purificação , Raízes de Plantas/química , Xylopia/química , Alcaloides/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Células RAW 264.7
7.
Fitoterapia ; 125: 18-23, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29242037

RESUMO

One unusual metal complex of cadinane sesquiterpene alkaloid (1), one new cadinane sesquiterpene alkaloid (2) and two new neolignan glycosides (3-4) along with six known cadinane sesquiterpene derivatives (5-10), nineteen known phenolic glycosides (11-29) were isolated from the aerial parts of Alangium alpinum. Structures of new crystals of metal complex were characterized by X-Ray diffraction and ICP-AES analysis. Other new compounds were elucidated by combined use and detailed analysis of HR-ESIMS, 1D and 2D NMR and CD spectroscopic method. In addition, all isolated compounds were tested for their inhibitory effects against TNF-α induced NF-κB activation in Hela cells and NO production in RAW 264.7 macrophages.


Assuntos
Alangiaceae/química , Alcaloides/isolamento & purificação , Glicosídeos/isolamento & purificação , Lignanas/isolamento & purificação , Sesquiterpenos/isolamento & purificação , Alcaloides/química , Animais , Células HeLa , Humanos , Metais/química , Camundongos , Estrutura Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Componentes Aéreos da Planta/química , Sesquiterpenos Policíclicos , Células RAW 264.7 , Sesquiterpenos/química , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA