Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806406

RESUMO

The NAC (NAM, ATAF1/2, and CUC2) transcription factors comprise one of the largest transcription factor families in plants and play important roles in stress responses. However, little is known about the functions of potato NAC family members. Here we report the cloning of a potato NAC transcription factor gene StNAC053, which was significantly upregulated after salt, drought, and abscisic acid treatments. Furthermore, the StNAC053-GFP fusion protein was found to be located in the nucleus and had a C-terminal transactivation domain, implying that StNAC053 may function as a transcriptional activator in potato. Notably, Arabidopsis plants overexpressing StNAC053 displayed lower seed germination rates compared to wild-type under exogenous ABA treatment. In addition, the StNAC053 overexpression Arabidopsis lines displayed significantly increased tolerance to salt and drought stress treatments. Moreover, the StNAC053-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under multiple stress treatments. Interestingly, the expression levels of several stress-related genes including COR15A,DREB1A, ERD11, RAB18, ERF5, and KAT2, were significantly upregulated in these StNAC053-overexpressing lines. Taken together, overexpression of the stress-inducible StNAC053 gene could enhance the tolerances to both salt and drought stress treatments in Arabidopsis, likely by upregulating stress-related genes.


Assuntos
Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Catalase/genética , Núcleo Celular/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Peroxidase/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Cloreto de Sódio/administração & dosagem , Cloreto de Sódio/farmacologia , Solanum tuberosum/efeitos dos fármacos , Superóxido Dismutase/genética , Regulação para Cima/genética
2.
Biomolecules ; 9(8)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366107

RESUMO

The MYB proteins represent a large family of transcription factors and play important roles in development, senescence, and stress responses in plants. In the current study, 233 MYB transcription factor-encoding genes were identified and analyzed in the potato genome, including 119 R1-MYB, 112 R2R3-MYB, and two R1R2R3-MYB members. R2R3-MYB is the most abundant MYB subclass and potato R2R3-MYB members together with their Arabidopsis homologs were divided into 35 well-supported subgroups as the result of phylogenetic analyses. Analyses on gene structure and protein motif revealed that members from the same subgroup shared similar exon/intron and motif organization, further supporting the results of phylogenetic analyses. Evolution of the potato MYB family was studied via syntenic analysis. Forty-one pairs of StMYB genes were predicted to have arisen from tandem or segmental duplication events, which played important roles in the expansion of the StMYB family. Expression profiling revealed that the StMYB genes were expressed in various tissues and several StMYB genes were identified to be induced by different stress conditions. Notably, StMYB030 was found to act as the homolog of AtMYB44 and was significantly up-regulated by salt and drought stress treatments. Furthermore, overexpression of StMYB030 in Arabidopsis enhanced salt stress tolerance of transgenic plants. The results from this study provided information for further functional analysis and for crop improvements through genetic manipulation of these StMYB genes.


Assuntos
Proteínas de Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Estresse Fisiológico , Fatores de Transcrição/genética , Duplicação Cromossômica , Cromossomos de Plantas/genética , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Conformação Proteica , Transporte Proteico , Alinhamento de Sequência , Sintenia , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA