Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 323: 117608, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38158098

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xianglianhuazhuo formula (XLHZ) has a potential therapeutic effect on chronic atrophic gastritis (CAG). However, the specific molecular mechanism remains unclear. AIM OF THE STUDY: To evaluate the effect of XLHZ on CAG in vitro and in vivo and its potential mechanisms. METHODS: A rat model of CAG was established using a composite modeling method, and the pathological changes and ultrastructure of gastric mucosa were observed. YY1/miR-320a/TFRC and ferroptosis-related molecules were detected. An MNNG-induced gastric epithelial cell model was established in vitro to evaluate the inhibitory effect of XLHZ on cell ferroptosis by observing cell proliferation, migration, invasion, apoptosis, and molecules related to ferroptosis. The specific mechanism of action of XLHZ in treating CAG was elucidated by silencing or overexpression of targets. RESULTS: In vivo experiments showed that XLHZ could improve the pathological status and ultrastructure of gastric mucosa and inhibit ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway. The results in vitro demonstrated that transfection of miR-320a mimics inhibited cell proliferation, migration, and invasion while promoting cell apoptosis. MiR-320a targeted TFRC and inhibited ferroptosis. Overexpression of TFRC reversed the inhibitory effect of miR-320a overexpression on cell proliferation. The effect of XLHZ was consistent with that of miR-320a. YY1 targeted miR-320a, and its overexpression promoted ferroptosis. CONCLUSION: XLHZ inhibited ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway, ultimately impeding the progression of CAG.


Assuntos
Ferroptose , Gastrite Atrófica , MicroRNAs , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Gastrite Atrófica/tratamento farmacológico , Gastrite Atrófica/genética , Transdução de Sinais , Proliferação de Células
2.
Foods ; 12(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36832876

RESUMO

China has a large variety of edible mushrooms and ranks first in the world in terms of production and variety. Nevertheless, due to their high moisture content and rapid respiration rate, they experience constant quality deterioration, browning of color, loss of moisture, changes in texture, increases in microbial populations, and loss of nutrition and flavor during postharvest storage. Therefore, this paper reviews the effects of essential oils and plant extracts on the preservation of edible mushrooms and summarizes their mechanisms of action to better understand their effects during the storage of mushrooms. The quality degradation process of edible mushrooms is complex and influenced by internal and external factors. Essential oils and plant extracts are considered environmentally friendly preservation methods for better postharvest quality. This review aims to provide a reference for the development of new green and safe preservation and provides research directions for the postharvest processing and product development of edible mushrooms.

3.
Phytomedicine ; 109: 154566, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610126

RESUMO

BACKGROUND: Depression is one of the most serious mental illnesses worldwide that endangers the health of people. The pathogenesis of depression is complex and is associated with abnormal neurotransmitter levels, activation of the hypothalamic-pituitary-adrenal (HPA) axis, inflammation, and gut flora-related disorders. However, most of the current pharmacological therapies used to manage depression are inconsistent and are associated with side effects. Owing to their low toxicity and wide availability in nature, polysaccharides are gradually attracting attention and are being discovered to exert direct or indirect antidepressant effects. PURPOSE: In this review, we have summarized the classification, dosage, and experimental models to study polysaccharides with antidepressant effects obtained from different sources. We have also reviewed the protective effects and underlying mechanisms of these polysaccharides in depression by modulating inflammation, the HPA axis, and intestinal flora. METHODS: We searched the PubMed, Web of Science, and Google scholar databases and included studies that reported the use of polysaccharides in treating depression. RESULTS: The unique benefits of natural polysaccharides as antidepressants lie in their potential to modulate inflammation, regulate the HPA axis, and regulate intestinal flora, giving full play to their antidepressant effects via multiple pathways and targets. CONCLUSION: Natural polysaccharides may be a promising resource for use as adjuvant antidepressant therapy. Our study might therefore provide evidence for the development of polysaccharide resources as antidepressants.


Assuntos
Depressão , Sistema Hipotálamo-Hipofisário , Humanos , Depressão/tratamento farmacológico , Sistema Hipófise-Suprarrenal , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo
4.
Front Pharmacol ; 13: 1033874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313293

RESUMO

Huazhuojiedu decoction (HZJDD), a traditional Chinese medicine prescription, has been clinically proven to be an effective treatment for ulcerative colitis (UC). However, the mechanism of HZJDD in the treatment of UC remains unclear. This study combined network pharmacology with experimental validation to explore the potential mechanism of HZJDD on UC. First, the relationship network diagrams between HZJDD and UC were established based on multiple databases. Then, the HZJDD-UC intersection genes target network was constructed and Gene Ontology-Biological processes (GO-BP) analysis was performed to discover the potential pharmacological mechanism. Finally, the results of GO-BP were verified in dextran sulfate sodium salt (DSS) induced UC rats. The network pharmacology results showed that 119 active components and 146 potential targets were screened for HZJDD, and six of the top 15 biological processes belonged to inflammatory response, cellular response to hypoxia, and cellular response to lipopolysaccharide (LPS). The GO-BP results indicated that the mechanism of HZJDD treatment of UC was related to inflammation, oxidative stress, and the regulation of LPS. Animal experiments showed that HZJDD could significantly reduce the disease activity index (DAI) score, improve colon length, and effectively repair the histomorphological and micromorphological changes in DSS-induced UC rats. Moreover, HZJDD reduced the expressions of CRP, TNF-α, IL-6, LPS, IL-1ß, and IL-18; downregulated the activity of MDA; and upregulated the activities of CAT, GSH, and SOD in DSS-induced UC rats. Furthermore, HZJDD suppressed the expression of the NLRP3/caspase-1 signaling pathway at the gene and protein levels to inhibit pyroptosis. Network pharmacology and animal experiments showed that HZJDD exerted a therapeutic effect on DSS-induced UC rats by reducing inflammation, oxidative stress, and restraining the NLRP3/caspase-1 signaling pathway to inhibit pyroptosis.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35497913

RESUMO

Objective: This study is aimed to reveal the possible mechanisms of artemisinin in the treatment of ulcerative colitis (UC) through bioinformatics analysis and experimental verification in UC model rats. Methods: Firstly, we searched two microarray data of the Gene Expression Omnibus (GEO) database to explore the differentially expressed genes (DEGs) between UC samples and normal samples. Then, we selected DEGs for gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The acute UC model of rats was established by using 3.5% dextran sulfate sodium (DSS) for 10 days to verify the core pathway. Finally, we evaluated the therapeutic effect of artemisinin at the molecular level and used metabonomics to study the endogenous metabolites in the rat serum. Results: We screened in the GEO database and selected two eligible microarray datasets, GSE36807 and GSE9452. We performed GO function and KEGG pathway enrichment analyses of DEGs and found that these DEGs were mainly enriched in the inflammatory response, immune response, and IL-17 and NF-κB signaling pathways. Finally, we verified the IL-17 signaling pathway and key cytokines, and ELISA and immunohistochemical results showed that artemisinin could downregulate the expression of proinflammatory cytokines such as IL-1ß and IL-17 in the IL-17 signaling pathway and upregulate the expression of the anti-inflammatory cytokine PPAR-γ. Metabolomics analysis showed that 33 differential metabolites were identified in the artemisinin group (AG) compared to the model group (MG). Differential metabolites were mainly involved in alanine, aspartate, and glutamate metabolism and synthesis and degradation of ketone bodies. Conclusion: In this study, we found that artemisinin can significantly inhibit the inflammatory response in UC rats and regulate metabolites and related metabolic pathways. This study provides a foundation for further research on the mechanism of artemisinin in the treatment of UC.

6.
Molecules ; 27(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35164321

RESUMO

Astragali Radix (AR) is one of the well-known traditional Chinese medicines with a long history of medical use and a wide range of clinical applications. AR contains a variety of chemical constituents which can be classified into the following categories: polysaccharides, saponins, flavonoids, amino acids, and trace elements. There are several techniques to extract these constituents, of which microwave-assisted, enzymatic, aqueous, ultrasonic and reflux extraction are the most used. Several methods such as spectroscopy, capillary electrophoresis and various chromatographic methods have been developed to identify and analyze AR. Meanwhile, this paper also summarizes the biological activities of AR, such as anti-inflammatory, antioxidant, antitumor and antiviral activities. It is expected to provide theoretical support for the better development and utilization of AR.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Astrágalo/química , Flavonoides/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA