Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 109(21): 3486-3499.e7, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34469773

RESUMO

Persistent activity underlying short-term memory encodes sensory information or instructs specific future movement and, consequently, has a crucial role in cognition. Despite extensive study, how the same set of neurons respond differentially to form selective persistent activity remains unknown. Here, we report that the cortico-basal ganglia-thalamo-cortical (CBTC) circuit supports the formation of selective persistent activity in mice. Optogenetic activation or inactivation of the basal ganglia output nucleus substantia nigra pars reticulata (SNr)-to-thalamus pathway biased future licking choice, without affecting licking execution. This perturbation differentially affected persistent activity in the frontal cortex and selectively modulated neural trajectory that encodes one choice but not the other. Recording showed that SNr neurons had selective persistent activity distributed across SNr, but with a hotspot in the mediolateral region. Optogenetic inactivation of the frontal cortex also differentially affected persistent activity in the SNr. Together, these results reveal a CBTC channel functioning to produce selective persistent activity underlying short-term memory.


Assuntos
Memória de Curto Prazo , Parte Reticular da Substância Negra , Animais , Gânglios da Base/fisiologia , Camundongos , Vias Neurais/fisiologia , Parte Reticular da Substância Negra/fisiologia , Substância Negra/fisiologia , Tálamo/fisiologia
2.
Neuron ; 107(6): 1080-1094.e5, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32702287

RESUMO

Neural activity in the corticothalamic network is crucial for sensation, memory, decision, and action. Nevertheless, a systematic characterization of corticothalamic functional connectivity has not been achieved. Here, we developed a high throughput method to systematically map functional connections from the dorsal cortex to the thalamus in awake mice by combing optogenetic inactivation with multi-channel recording. Cortical inactivation resulted in a rapid reduction of thalamic activity, revealing topographically organized corticothalamic excitatory inputs. Cluster analysis showed that groups of neurons within individual thalamic nuclei exhibited distinct dynamics. The effects of inactivation evolved with time and were modulated by behavioral states. Furthermore, we found that a subset of thalamic neurons received convergent inputs from widespread cortical regions. Our results present a framework for collecting, analyzing, and presenting large electrophysiological datasets with region-specific optogenetic perturbations and serve as a foundation for further investigation of information processing in the corticothalamic pathway.


Assuntos
Conectoma , Técnicas de Rastreamento Neuroanatômico/métodos , Optogenética/métodos , Córtex Somatossensorial/citologia , Tálamo/citologia , Animais , Feminino , Masculino , Camundongos , Condução Nervosa , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia
3.
Nature ; 545(7653): 181-186, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28467817

RESUMO

Persistent neural activity maintains information that connects past and future events. Models of persistent activity often invoke reverberations within local cortical circuits, but long-range circuits could also contribute. Neurons in the mouse anterior lateral motor cortex (ALM) have been shown to have selective persistent activity that instructs future actions. The ALM is connected bidirectionally with parts of the thalamus, including the ventral medial and ventral anterior-lateral nuclei. We recorded spikes from the ALM and thalamus during tactile discrimination with a delayed directional response. Here we show that, similar to ALM neurons, thalamic neurons exhibited selective persistent delay activity that predicted movement direction. Unilateral photoinhibition of delay activity in the ALM or thalamus produced contralesional neglect. Photoinhibition of the thalamus caused a short-latency and near-complete collapse of ALM activity. Similarly, photoinhibition of the ALM diminished thalamic activity. Our results show that the thalamus is a circuit hub in motor preparation and suggest that persistent activity requires reciprocal excitation across multiple brain areas.


Assuntos
Córtex Motor/fisiologia , Tálamo/fisiologia , Animais , Feminino , Masculino , Camundongos , Córtex Motor/citologia , Movimento/fisiologia , Neurônios/fisiologia , Tálamo/citologia , Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA