Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cosmet Dermatol ; 22(10): 2839-2851, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309263

RESUMO

BACKGROUND: Ursolic acid is a powerful drug that possesses many therapeutic properties, such as hepatoprotection, immunomodulation, anti-inflammatory, antidiabetic, antibacterial, antiviral, antiulcer, and anticancer activity. Centella asiatica (L.) Urban (Umbelliferae) contains a triterpene called asiatic acid, which has been used effectively in traditional Chinese and Indian medicine system for centuries. Anticancer, anti-inflammatory, and neuroprotective properties are only some of the many pharmacological actions previously attributed to asiatic acid . AIM: The present work developed an optimized combinatorial drug-loaded nano-formulation by Quality by design approach. MATERIALS AND METHODS: The optimize transliposome for accentuated dermal delivery of dual drug. The optimization of drug-loaded transliposome was done using the "Box-Behnken design." The optimized formulation was characterized for vesicles size, entrapment efficiency (%), and in vitro drug release. Additionally, transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), and dermatokinetic study were performed for further evaluation of drug-loaded optimized transliposome formulation. RESULTS: The optimized combinatorial drug-loaded transliposome formulation showed a particle size of 86.36 ± 2.54 nm, polydispersity index (PDI) 0.230 ± 0.008, and an entrapment efficiency of 87.43 ± 2.66% which depicted good entrapment efficiency. In vitro drug release of ursolic acid and asiatic acid transliposomes was found to be 85.12 ± 2.54% and 80.23 ± 3.23%, respectively, as compared to optimized ursolic acid and asiatic acid transliposome gel drug release that was 67.18 ± 2.85% and 60.28 ± 4.12%, respectively. The skin permeation study of ursolic and asiatic acid conventional formulation was only 32.48 ± 2.42%, compared with optimized combinatorial drug-loaded transliposome gel (79.83 ± 4.52%) at 12 h. After applying combinatorial drug-loaded transliposome gel, rhodamine was able to more easily cross rat skin, as observed by confocal laser scanning microscopy, in comparison with when the rhodamine control solution was used. DISCUSSION: The UA_AA-TL gel formulation absorbed more ursolic acid and asiatic acid than the UA_AA-CF gel formulation, as per dermatokinetic study. Even after being incorporated into transliposome vesicles, the antioxidant effects of ursolic and asiatic acid were still detectable. In most cases, transliposomes vesicular systems generate depots in the skin's deeper layers and gradually release the medicine over time, allowing for fewer applications. CONCLUSION: In overall our studies, it may be concluded that developed dual drug-loaded transliposomal formulation has great potential for effective topical drug delivery for skin cancer.


Assuntos
Portadores de Fármacos , Absorção Cutânea , Ratos , Animais , Administração Cutânea , Portadores de Fármacos/farmacologia , Pele , Sistemas de Liberação de Medicamentos , Rodaminas/metabolismo , Rodaminas/farmacologia , Tamanho da Partícula , Ácido Ursólico
2.
Data Brief ; 35: 106875, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33665266

RESUMO

The most investigated conducting polymer (CP) is polyaniline (PANI)), a promising polymer due to its excellent environmental stability, simplicity of synthesis, and high electrical conductivity [1], [2], [3], [4]. In corrosion protection applications, the PANI film has shown promising potential in protecting active metals such as iron by acting as physical barrier coatings, as a primer layer and as component in a multi-layer coating system [5]. The PANI has an excellent potential to replace the toxic metal, such as chromates, in corrosion protection and is considered a green anti-corrosion candidate [5], [6], [7]. The electrochemical synthesis of PANI coatings on active metals is accomplished by the dissolution of the metal at a potential lower than the monomer oxidation potential [8], [9]. Therefore, electrochemical synthesis of PANI coatings on active metal requires a proper choice of the electrolyte and solvent that should strongly passivate the metal without hindering the electropolymerization process [10], [11]. The data reported here are obtained while the anodic polarization of mild steel (MS) is carried out in succinic acid, sulphanilic acid, sodium orthophosphate, sodium potassium tartrate (Na-K tartrate), and benzoic acid in 3:1 alcohol-water (BAW) solutions [11]. However, the results of electrolytes sodium-potassium tartrate (Na-K tartrate) and benzoic acid in alcohol-water (BAW) are reported for the polymerization of aniline onto MS [11]. The SEM image of MS sample polarized in 0.3 M oxalic acid solution and 0.1 M aniline in 0.3 M oxalic acid is reported as a dataset or a supplementary material of the main manuscript 'The Effect of Electrolytes on the Coating of Polyaniline on Mild Steel by Electrochemical Methods and Its Corrosion Behaviour [11].'

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA