Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 156: 111138, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651010

RESUMO

The fruit nutrigenomics is an interesting and important research area towards nutrition enhancement. The phytic acid is one of the major antinutrient compound, present in seeded fruits and crops. It hinders the absorption of iron (Fe), zinc (Zn), magnesium (Mg), potassium (K) and calcium (Ca), causing mineral deficiencies. In the present study, the BsPhy gene was overexpressed in the cucumber fruits using the tomato fruit specific E8 and constitutive CaMV 35S promoter. The E8 promoter imparted heterologous expression of GUS gene in cucumber fruits, furthermore, the fruit specific expression of E8 promoter with BsPhy gene was confirmed in transgenics (E8::BsPhy) using anti rabbit-phytase antibody. The physio-biochemical analysis of transgenics revealed, maximum phytase activity in E8::BsPhy cucumber fruits at 10 days after anthesis (DAA) compared to 35S::BsPhy and wild-type (WT) fruits. Consequently, E8::BsPhy fruits also showed increased amount of inorganic phosphorus (Pi), total phosphorus (P), minerals (Zn, Fe, Mg, K, Ca), total carotenoid and other macronutrients at 10 DAA compared to 35S::BsPhy fruits. The metabolite profiling of fruits (10 DAA) showed increased sugars, amino acids, sugar acids and polyols, in both E8::BsPhy and 35S::BsPhy transgenics suggesting higher phytate metabolism, compared to WT fruits. Interestingly, both the transgenic fruits showed higher fruit biomass and yield along with improved nutritional quality, which can be attributed to increased P and Zn contents in transgenic fruits, compared to WT fruits. Our findings reveal that the BsPhy gene enhances minerals and macronutrients in transgenic cucumber fruits making it nutritious and healthy.


Assuntos
6-Fitase , Cucumis sativus , 6-Fitase/genética , Animais , Bacillus subtilis/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Minerais/metabolismo , Fósforo , Compostos Fitoquímicos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Coelhos
2.
Physiol Mol Biol Plants ; 27(12): 2787-2804, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35035136

RESUMO

Zinc (Zn) is a vital micronutrient from the perspective of biofortification and biotic stress endurance in pigeonpea. The ZIP transporters with domain (Pfam: PF02535) regulate uptake and transport of metal ions, including Zn, in consonance with plant metal homeostasis. Genome-wide analysis in pigeonpea identified 19 non-redundant members of ZIP family (CcZIP) that were analyzed for gene structure, conserved motifs and homology besides other structural and biochemical parameters. Intra-specific as well as the inter-specific phylogenetic relationships of these 19 CcZIPs were elucidated by comparison with ZIP proteins of Arabidopsis thaliana, Medicago truncatula, Phaseolus vulgaris and Glycine max. In addition to gene structure, the cis-regulatory elements (CREs) in the promoter region were also identified. It revealed several stress responsive CREs that might be regulatory for differential expression of CcZIP proteins. Expression analysis showed that both CcZIP3 and CcZIP15, having zinc deficiency responsive element, up-regulated in the reproductive leaf tissues and down-regulated in matured green pods of the pod borer resistant genotypes with higher zinc content. Alternately, the expression of CcZIP6 and CcZIP13 was higher in matured green pods than reproductive leaves of the resistant genotypes. These findings on differential expression indicate the possible role of these CcZIPs on the mobilization of Zn from leaves to pods, phloem loading and unloading, and higher accumulation of seed zinc in pod borer resistant genotypes used in this study. Further functional characterization of CcZIP genes could shed light on their role in bio-fortification and genetic improvement to inhibit the pod borer herbivory in pigeonpea. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01111-1.

3.
Science ; 370(6517): 725-730, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958580

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a global crisis. Key to SARS-CoV-2 therapeutic development is unraveling the mechanisms that drive high infectivity, broad tissue tropism, and severe pathology. Our 2.85-angstrom cryo-electron microscopy structure of SARS-CoV-2 spike (S) glycoprotein reveals that the receptor binding domains tightly bind the essential free fatty acid linoleic acid (LA) in three composite binding pockets. A similar pocket also appears to be present in the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). LA binding stabilizes a locked S conformation, resulting in reduced angiotensin-converting enzyme 2 (ACE2) interaction in vitro. In human cells, LA supplementation synergizes with the COVID-19 drug remdesivir, suppressing SARS-CoV-2 replication. Our structure directly links LA and S, setting the stage for intervention strategies that target LA binding by SARS-CoV-2.


Assuntos
Ácido Linoleico/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus , Sítios de Ligação , Chlorocebus aethiops , Microscopia Crioeletrônica , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio , Modelos Moleculares , Peptidil Dipeptidase A/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Células Vero
4.
Plant Sci ; 248: 116-27, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27181953

RESUMO

Pod-filling is an important stage of peanut (Arachis hypogaea) seed development. It is partially controlled by genetic factors, as cultivars considerably vary in pod-filling potential. Here, a study was done to detect changes in mRNA levels that accompany pod-filling processes. Four seed developmental stages were sampled from two peanut genotypes differing in their oil content and pod-filling potential. Transcriptome data were generated by RNA-Seq and explored with respect to genic and subgenomic patterns of expression. Very dynamic transcriptomic changes occurred during seed development in both genotypes. Yet, general higher expression rates of transcripts and an enrichment in processes involved "energy generation" and "primary metabolites" were observed in the genotype with the better pod-filling ("Hanoch"). A dataset of 584 oil-related genes was assembled and analyzed, resulting in several lipid metabolic processes highly expressed in Hanoch, including oil storage and FA synthesis/elongation. Homoeolog-specific gene expression analysis revealed that both subgenomes contribute to the oil genes expression. Yet, biases were observed in particular parts of the pathway with possible biological meaning, presumably explaining the genotypic variation in oil biosynthesis and pod-filling. This study provides baseline information and a resource that may be used to understand development and oil biosynthesis in the peanut seeds.


Assuntos
Arachis/crescimento & desenvolvimento , Óleos de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Arachis/genética , Arachis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Óleo de Amendoim , Reação em Cadeia da Polimerase , Sementes/genética , Sementes/metabolismo
5.
J Environ Sci Eng ; 51(3): 157-62, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21117428

RESUMO

There has been a steady decrease in the area occupied by wetlands in creeks and estuaries adjacent urban areas due to unprecedented urban growth in coastal cities, for example, Thane Creek and Ulhas River Estuary near Mumbai, India. Urban cities serve as centres of employment and attract a large number of migrants from other places. In case of coastal cities, due to inadequate infrastructure, wastewater and solid waste are disposed of into wetlands and estuary. Discharge of sediments and solid waste into the creeks from drains and construction activities has resulted in decreased flow depth in the coastal waters of Thane Creek and Ulhas River Estuary. Various researchers have studied individual elements of Thane Creek and Ulhas River Estuary at micro level. However, a holistic approach for restoration and conservation of the creek and estuary is required. This paper presents the details of an integrated approach incorporating different conservation measures such as sewerage and sewage treatment, urban drainage management, solid waste management, mangrove plantation and dredging.


Assuntos
Conservação dos Recursos Naturais , Água Doce , Água do Mar , Sedimentos Geológicos , Índia , Áreas Alagadas
6.
Indian J Clin Biochem ; 24(4): 426-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23105872

RESUMO

This study was conducted to find out the level of oxidative stress and effect of supplementation of vitamin C, D and Calcium on levels of SOD, serum and urinary fluoride in children residing in endemic fluorosis area. For this the fluoride belt of Jaipur district was selected. The parameters selected were Super oxide dismutase, serum fluoride and urinary fluoride. The study was conducted on one hundred children, selected from four areas (25 from each area) consuming water containing 1.2, 2.4, 5.6 and 13.6 mg/l of fluoride. Drinking water fluoride, serum and urinary fluoride were measured by Ion selective electrode method. Serum SOD by Xanthine oxidase method using kit of Ransod (kit cat. No. SD125). The post treatment values showed a significant reduction in serum fluoride and SOD. Urinary fluoride levels increased significantly in post treatment stage. The results revealed a normal SOD levels in all groups but an increasing trend was observed with increasing fluoride concentration. Treatment with Calcium, Vitamin D and Vitamin C showed a significant reduction in serum fluoride and SOD and increase in urinary fluoride. A high positive correlation between pretreatment and post treatment group was observed in serum fluoride, SOD and urinary fluoride (P < 0.05). The study indicated an increasing oxidative stress in cases of fluorosis with increasing drinking water fluoride concentration. Treatment with Calcium, Vitamin D and Vitamin C resulted a significant reduction in serum fluoride and SOD and increase in urinary fluoride.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA