Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Ethnopharmacol ; 327: 118055, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484951

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trachyspermum roxburghianum (DC.) H. Wolff, commonly known as 'Ajamoda,' is a neglected Indian spice highly used in Ayurveda and folklore remedies as an antimicrobial for chronic wounds and discharges, along with many other disease conditions. AIM OF THE STUDY: The objective of the study was to explore chemical composition and to investigate the antioxidant, antimicrobial, analgesic, and wound healing activities of T. roxburghianum fruit essential oil from India. MATERIALS AND METHODS: The phytochemical characterization of the oil was determined through standard qualitative procedures and the gas chromatography-mass spectrometry (GC-MS) technique. The in vitro antioxidant aptitude was assessed by scavenging DPPH and ABTS radicals. The antimicrobial potential of the oil was investigated using the disc diffusion method, followed by the determination of minimum inhibitory concentration against Gram-positive and Gram-negative bacterial and fungal strains. The analgesic potential was evaluated using thermal and chemically induced pain models in Swiss albino mice. Wound healing was assessed in vivo, including determining wound contraction rates, histopathology, and hydroxyproline estimation, using the excision wound model in Swiss albino mice. RESULTS: GC-MS analysis identified 55 compounds with major terpenoids, including thymol (13.8%), limonene (11.5%), and others. Substantial radical-scavenging activity was exhibited by T. roxburghianum fruit essential oil (TREO) (IC50 94.41 ± 2.00 µg/mL in DPPH assay and 91.28 ± 1.94 µg/mL in ABTS assay). Microorganisms were inhibited with low MIC (2 µL/mL for the inhibition of Staphylococcus aureus and Bacillus subtilis; 4 µL/mL against Salmonella typhi and 16 µL/mL against Candida albicans). In the cytotoxicity study, no cytotoxicity was observed on the Monkey Normal Kidney Cell line (Vero). Significant antinociceptive effects were observed (25.47 ± 1.10 % of inhibition at 100 mg/kg and 44.31 ± 1.69 % at 200 mg/kg). A remarkable rate of wound closure and epithelization, along with a marked increase in hydroxyproline content, were observed for the oil during wound healing in mice. CONCLUSIONS: The results suggested that oil could be utilized as a potential source of wound healing therapeutics.


Assuntos
Anti-Infecciosos , Benzotiazóis , Óleos Voláteis , Ácidos Sulfônicos , Camundongos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Hidroxiprolina , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/química , Cicatrização , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Testes de Sensibilidade Microbiana
2.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37765119

RESUMO

The promising therapeutic implications of nanoparticles have spurred their development for biomedical applications. An eco-friendly methodology synthesizes gold nanoparticles using Cordyceps militaris, an edible mushroom (Cord-Au-NPs), using a quality-by-design approach (central composite design). UV-visible spectroscopy analysis revealed an absorption peak at 540-550 nm, thus confirming the synthesis of gold nanoparticles. Cord-Au-NPs have a crystalline structure, as evidenced by the diffraction peaks. The zeta potential value of -19.42 mV signifies the stability of Cord-Au-NPs. XRD study shows gold facets and EDX analysis revealed a strong peak of spherical nanoparticles in the gold region with a mean particle size of 7.18 nm and a polydispersity index of 0.096. The obtained peaks are closely associated with phenolic groups, lipids, and proteins, as examined by FTIR, suggesting that they function as the reducing agent. Cord-Au-NPs exhibited dose-dependent antioxidant, antidiabetic, and antibacterial activity. The method is eco-friendly, nontoxic, less time-consuming, and does not use synthetic materials, leading to higher capabilities in biomedical applications.

4.
J Ethnopharmacol ; 304: 116064, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36549367

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Processing cow ghee (clarified butterfat) with therapeutic herbs, i.e. ghrita, is recognized for augmenting the therapeutic efficacy of plant materials. Ashwagandha ghrita (AG) is an effective Ayurvedic formulation consisting of Indian ginseng, i.e., Withania somnifera (L.) Dunal, the main constituent used to treat infertility, weakness, gynaecological disorders, and general debility. OBJECTIVES: The present investigation was undertaken to corroborate the ethnopharmacological claim of AG as 'Vajikarana Rasayana' for its aphrodisiac potential using bioinformatics (in-silico) and experimental (in-vitro and in-vivo) approaches. METHODS: AG was formulated as per the methods reported in Ayurved sarsangraha. AG was further subjected to HPLC, GCMS analysis, and biological (acute toxicity and aphrodisiac) assessment per the standard procedures. Thirty-eight bioactives of Indian ginseng were subjected to computational studies (molecular docking and network pharmacology) to confirm the plausible mechanism. RESULTS: AG was found to be safe up to 2000 mg/kg body wt., and it showed dose-dependent upsurge (p < 0.01 and p < 0.05, wherever necessary) in mount and intromission frequency, genital grooming, and anogenital sniffing at 150 and 300 mg/kg body weight suggesting aphrodisiac activity. In-vitro studies demonstrated significant relaxation of the Corpus Cavernosal Smooth Muscle at all concentrations in a dose-dependent manner. Furthermore, the results of molecular modelling studies were in agreement with the biological activity and showed interaction with phosphodiesterase-5 as a possible target. CONCLUSION: AG exhibited an aphrodisiac effect and substantiated the traditional claim of Indian ginseng-based ghrita formulation as 'Vajikarana Rasayana'.


Assuntos
Afrodisíacos , Withania , Animais , Feminino , Bovinos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
5.
Biochem Biophys Res Commun ; 623: 127-132, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914350

RESUMO

Chronic, non-healable wounds have been a threat throughout history and have consumed centuries of traditional and modern research. In wound repair, a growing variety of novel treatments have been developed. At various stages of wound healing, nanostructure systems are employed. The drug may be synthesized at the nanoscale to act as a "provider," or nanomaterial could be employed as biomedical devices. Capparis zeylanica was used to synthesize Titanium dioxide nanoparticles (TiO2NPs) under ambient temperature. The UV-Vis spectrophotometer was used to confirm the illumination of fabricated TiO2NPs tuned to a size of 352 nm TiO2NPs have been revealed to be spherical and linked to one another using scanning electron microscopy. Biologically active functionality molecules involved in green synthesized TiO2NPs were indicated by Fourier transform infrared spectroscopy peaks. The TiO2NPs are amorphous, according to X-ray diffraction spectra. Skin diseases causing pathogens were studied for anti-microbial activity using the agar well diffusion method, and the results indicated significant anti-microbial properties. Furthermore, the wound healing ability of fabricated TiO2NPs was investigated in an excision wound model in Swiss albino mice. Finally, our findings revealed that TiO2NPs had provided a unique therapeutic approach for wound healing and in the planning of therapies.


Assuntos
Anti-Infecciosos , Capparis , Nanopartículas Metálicas , Nanopartículas , Animais , Antibacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Camundongos , Nanopartículas/química , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química , Titânio/farmacologia , Cicatrização , Difração de Raios X
6.
J Ayurveda Integr Med ; 13(2): 100547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35219071

RESUMO

'Bhallatakadi Ghrita' (BG), comprising the plant extracts of Semecarpus anacardium L., Argemone mexicana L., Cocculus hirsutus L., and Woodfordia fruticosa K. 'Murcchana samskara' of ghee before any 'ghrita-paka' preparation evidenced the maximum acceptability for topical application. The current study dealt with the effect of the 'Murcchana' process on the therapeutic efficacy of BG. In the first step, 'Murcchita' ghee was prepared as per reference texts and then developed the 'Murcchita Bhallatakadi Ghrita' (M-BG), which was further assessed for wound healing activity using incision and excision wound animal models. 'Murcchanasamskara' altered the wound healing ability of M-BG (100% wound contraction on 15th post wounding day with 13.50 ± 0.22 days complete re-epithelization time and 562.33 ± 7.37 g breaking strength). The presence of antioxidants, polyphenols, flavonoids, and fatty acids (known for their potential wound healing properties) in M-BG could accelerate the wound contraction rate (P < 0.001). The present investigation has corroborated the Ayurvedic/traditional attribute of 'Murcchanasamskara' to augment the medicinal properties of the BG.

7.
J Ayurveda Integr Med ; 13(2): 100525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34998645

RESUMO

Panchgavya represents milk, urine, dung, ghee, and curd, derived from cow and serves irreplaceable medicinal importance in Ayurveda and traditional Indian clinical practices. In Ayurveda,Panchgavya treatment is termed as 'Cowpathy'. In India, the cow is worshipped as a god called 'Gaumata,' indicating its nourishing nature like a mother. Ayurveda recommends Panchagavya to treat diseases of multiple systems, including severe conditions, with almost no side-effects. It can help build a healthy population, alternative sources of energy, complete nutritional requirements, eradicate poverty, pollution-free environment, organic farming, etc. Panchgavya can also give back to mother nature by promoting soil fertility, earthworm production, protecting crops from bacterial and fungal infections, etc. Scientific efforts shall be taken to build evidence for the clinical application of Cowpathy. The present review aims to summarize the health and medicinal benefits of Panchgavya.

8.
Comput Biol Med ; 142: 105223, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033877

RESUMO

Silymarin is used as a hepatoprotective agent since ancient times which could be via its potent anti-oxidant effect. However, the mode of silymarin for the hepatoprotective effect has not been established with the targets involved in hepatic cirrhosis. The present study investigated the multiple interactions of the flavonolignans from Silybum marianum with targets involved in hepatic cirrhosis using a series of system biology approaches. Chemo-informative tools and databases i.e. DIGEP-Pred and DisGeNET were used to predict the targets of flavonolignans and proteins involved in liver cirrhosis respectively. Further, STRING was used to enrich the protein-protein interaction for the flavonolignans-modulated targets. Similarly, molecular docking was performed using AutoDock Vina. Additionally, molecular dynamics simulation and MM-PBSA calculations were carried out for the lead-hit complexes by GROMACS. Thirteen flavonolignans were identified from S. marianum, in which silymonin exhibited the highest drug-likeness score i.e. 1.09. Similarly, CTNNB1 was found to be regulated by the 12 different flavonolignans and was majorly expressed within the compound(s)-protein(s)-pathway(s) network. Further, silymonin had the highest binding affinity; binding energy -9.2 kcal/mol with the CTNNB1 and formed very stable hydrogen bond interactions with Arg332, Ser336, Lys371, and Arg475 throughout 100 ns molecular dynamic production run. The binding free energy of CTNNB1-silymonin complex was found to be -15.83 ± 2.71 kcal/mol. The hepatoprotective property of S. marianum may be due to the presence of silymonin and silychristin; this could majorly modulate CTNNB1, HMOX1, and CASP8 in combination with other flavonolignans. Our findings further suggest designing the in-vitro and in-vivo studies to validate the interaction of flavonolignans with identified targets to strengthen present findings of S. marianum as a hepatoprotective..


Assuntos
Silimarina , Biologia , Silybum marianum/química , Silybum marianum/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais , Silimarina/química , Silimarina/metabolismo , Silimarina/farmacologia
9.
J Ayurveda Integr Med ; 13(1): 100374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33250601

RESUMO

The Ministry of AYUSH recommended the use of a decoction of the mixture of Ocimum tenuiflorum, Cinnamomum verum, Piper nigrum, Zingiber officinale, and Vitis vinifera as a preventive measure by boosting the immunity against the severity of infection caused by a novel coronavirus (COVID-19). The present study aimed to identify the probable modulated pathways by the combined action of AYUSH recommended herbal tea and golden milk formulation as an immune booster against COVID-19. Reported phytoconstituents of all the medicinal plants were retrieved from the ChEBI database, and their targets were predicted using DIGEP-Pred. STRING database and Cytoscape were used to predict the protein-protein interaction and construct the network, respectively. Likewise, MolSoft and admet SAR2.0 were used to predict the druglikeness score and ADMET profile of phytoconstituents. The study identified the modulation of HIF-1, p53, PI3K-Akt, MAPK, cAMP, Ras, Wnt, NF-kappa B, IL-17, TNF, and cGMP-PKG signaling pathways to boost the immune system. Further, multiple pathways were also identified which are involved in the regulation of pathogenesis of the multiple infections and non-infectious diseases due to the lower immune system. Results indicated that the recommended herbal formulation not only modulated the pathways involved in boosting the immunity but also modulated the multiple pathways that are contributing to the progression of multiple disease pathogenesis which would add the beneficial effect in the co-morbid patients of hypertension and diabetes. The study provides the scientific documentation of the role of the Ayurvedic formulation to combat COVID-19.

10.
J Biomol Struct Dyn ; 40(12): 5295-5308, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33459174

RESUMO

Traditionally, Withania somnifera is widely used as an immune booster, anti-viral, and for multiple medicinal purposes. The present study investigated the withanolides as an immune booster and anti-viral agents against the coronavirus-19. Withanolides from Withania somnifera were retrieved from the open-source database, their targets were predicted using DIGEP-Pred, and the protein-protein interaction was evaluated. The drug-likeness score and intestinal absorptivity of each compound were also predicted. The network of compounds, proteins, and modulated pathways was constructed using Cytoscape, and docking was performed using autodock4.0, and selected protein-ligand complexes were subjected to 100 ns Molecular Dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Withanolide_Q was predicted to modulate the highest number of proteins, showed human intestinal absorption, and was predicted for the highest drug-likeness score. Similarly, combined network interaction identified Withanolide_Q to target the highest number of proteins; RAC1 was majorly targeted, and fluid shear stress and atherosclerosis associated pathway were chiefly regulated. Similarly, Withanolide_D and Withanolide_G were predicted to have a better binding affinity with PLpro, Withanolide_M with 3CLpro, and Withanolide_M with spike protein based on binding energy and number of hydrogen bond interactions. MD studies suggested Withanoside_I with the highest binding free energy (ΔGbind-31.56 kcal/mol) as the most promising inhibitor. Among multiple withanolides from W. somnifera, Withanolide_D, Withanolide_G, Withanolide_M, and Withanolide_Q were predicted as the lead hits based on drug-likeness score, modulated proteins, and docking score to boost the immune system and inhibit the COVID-19 infection, which could primarily act against COVID-19. HighlightsWithanolides are immunity boosters.Withanolides are a group of bio-actives with potential anti-viral properties.Withanolide_G, Withanolide_I, and Withanolide_M from Withania somnifera showed the highest binding affinity with PLpro, 3CLpro, and spike protein, respectively.Withanolides from Withania somnifera holds promising anti-viral efficacy against COVID-19.Communicated by Vsevolod Makeev.


Assuntos
Tratamento Farmacológico da COVID-19 , Withania , Vitanolídeos , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Withania/química , Withania/metabolismo , Vitanolídeos/química , Vitanolídeos/metabolismo , Vitanolídeos/farmacologia
11.
Nat Prod Res ; 36(22): 5772-5777, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34894894

RESUMO

The study was aimed to investigate the phytochemical composition, antioxidant, antibacterial and enzyme inhibitory effects of Psydrax dicoccos leaf (PDL). Hydroalcoholic extract (HAE) was recorded with high concentration of total phenolics (59.68 ± 0.3 mg GAE/g), total flavonoids (57.85 ± 0.5 mgQRE/g) and proanthocyanidin (24.98 ± 0.17 mgAAE/g). Ethyl acetate (31.76 ± 1.52 mgQE/g), methanolic (34.99 ± 0.16 mgAAE/g) and aqueous (75.00 ± 0.30 mgGAE/g) extracts showed a high amount of total flavanols, vitamin E and total tannins, respectively. GC-MS analysis facilitated the identification of 56 metabolites with squalene and cinnamic acid as prominent compounds. HAE showed moderate α-amylase (IC50 of 48.94 ± 0.5 µg/mL) and α-glucosidase (IC50 of 46.98 ± 0.5 µg/mL) inhibitory activities. HAE is also perceived as a potent radical scavenger, reducing agent, metal chelating power, and total antioxidant capacity. For antibacterial activity, the aqueous extract was most effective with the MIC ranged from 87.5 to 175 µg/mL. Further characterization and in vivo studies are suggested to validate its traditional claim as a potential source of therapeutic agents.


Assuntos
Antioxidantes , Extratos Vegetais , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Antibacterianos/farmacologia , alfa-Glucosidases/metabolismo
12.
J Food Biochem ; : e13851, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236082

RESUMO

Plant-derived bioactive molecules display potential antiviral activity against various viral targets including mode of viral entry and its replication in host cells. Considering the challenges and search for antiviral agents, this review provides substantiated data on chemical constituents of edible fruits with promising antiviral activity. The bioactive constituents like naringenin, mangiferin, α-mangostin, geraniin, punicalagin, and lectins of edible fruits exhibit antiviral effect by inhibiting viral replication against IFV, DENV, polio, CHIKV, Zika, HIV, HSV, HBV, HCV, and SARS-CoV. The significance of edible fruit phytochemicals to block the virulence of various deadly viruses through their inhibitory action against the entry and replication of viral genetic makeup and proteins are discussed. In view of the antiviral property of active constituents of edible fruits which can strengthen the immune system and reduce oxidative stress, they are suggested to be diet supplements to combat various viral diseases including COVID-19. PRACTICAL APPLICATIONS: Considering the increasing threat of COVID-19, it is suggested to examine the therapeutic efficacy of existing antiviral molecules of edible fruits which may provide prophylactic and adjuvant therapy with their potential antioxidant, anti-inflammatory, and immune-modulatory effects. Several active molecules like geraniin, naringenin, (2R,4R)-1,2,4-trihydroxyheptadec-16-one, betacyanins, mangiferin, punicalagin, isomangiferin, procyanidin B2, quercetin, marmelide, jacalin lectin, banana lectin, and α-mangostin isolated from various edible fruits have showed promising antiviral properties against different pathogenic viruses. Especially flavonoid compounds extracted from edible fruits possess potential antiviral activity against a wide array of viruses like HIV-1, HSV-1 and 2, HCV, INF, dengue, yellow fever, NSV, and Zika virus infection. Hence taking such fruits or edible fruits and their constituents/compounds as dietary supplements could deliver adequate plasma levels in the body to optimize the cell and tissue levels and could lead to possible benefits for the preventive measures for this pandemic COVID-19 situation.

13.
Homeopathy ; 110(3): 180-185, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34020480

RESUMO

BACKGROUND: Syzygium cumini (Lam.), family Myrtaceae, has a long history of use in folk and traditional systems of indigenous medicine. Many homeopathic formulations of Jamun seeds are available in the market for their crucial usage as an anti-diabetic. Despite the popularity of homeopathic products, a lack of standard quality is a significant impediment in their acceptance. The present study aimed to develop and validate a chromatographic method for the standardization of the homeopathic formulation of Syzygium cumini. METHODS: The seeds of Syzygium cumini were studied for physicochemical evaluation and preliminary phytochemical screening. Also, the in-house standard and marketed homeopathic formulations of Syzigium cumini were standardized for pH, total fatty content, total phenolic and flavonoid content, with quantitative high-performance liquid chromatography- photodiode array detector (HPLC-PDA) analysis by using ellagic acid as a marker. RESULTS: The physicochemical characteristics of crude material were found to be within pharmacopeial limits. The phytochemical screening showed the presence of various secondary metabolites. The total phenolic and flavonoid content was higher in the in-house standard than in marketed formulations. A validated quantitative HPLC-PDA analysis showed variations of ellagic acid content in different homeopathic formulations. CONCLUSION: Physicochemical analysis and the HPLC method for quantitative estimation of ellagic acid can be used to standardize a homeopathic formulation of Syzygium cumini.


Assuntos
Cromatografia/normas , Formulários Homeopáticos como Assunto/normas , Syzygium , Cromatografia/métodos , Humanos , Padrões de Referência
14.
J Complement Integr Med ; 18(3): 507-515, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33691354

RESUMO

OBJECTIVES: Ghee is widely considered as the Indian name for clarified butterfat and processing of ghee with therapeutic herbs i.e., ghrita is renowned for augmenting their medicinal properties. The wound is considered as a challenging clinical problem with early and late complications. To reduce the burden of wounds with the shortest period and minimum scaring, an attempt was made to prepare and evaluate the wound healing potential of ghee based polyherbal formulation. METHODS: Based on local ethnic tribal claims, Semecarpus anacardium L., Argemone mexicana L., Cocculus hirsutus L., and Woodfordia fruticosa K. were collected from Western Ghats of India. The polyherbal Bhallatakadi Ghrita (BG) formulation was prepared as per Ayurvedic procedure and assessed for its wound healing potential using incision and excision wound animal models. RESULTS: BG treated group showed a complete contraction of wounds (99.82 ± 0.10%) (p<0.001) with 15.17 ± 0.40 days re-epithelization time and breaking strength (531.50 ± 5.89) (p<0.05). The hydroxyproline content of BG was found to be significantly higher i.e., 4.23 ± 0.21 (p<0.05). Quantitative estimation of BG exhibited 54.7 ± 3.7 mg100 g-1 of polyphenols and 42.3 ± 5.4 mg.100 g-1 flavonoids in terms of gallic acid and quercetin respectively. HPLC analysis revealed the presence of gallic acid and quercetin whereas the presence of fatty acids was confirmed by GC-MS analysis. CONCLUSIONS: It may conclude that the presence of quercetin, gallic acid, and fatty acids could have accelerated the healing rate of the ghrita formulation, as they have already been known for their potential wound healing properties.


Assuntos
Ghee , Animais , Bovinos , Feminino , Índia , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Cicatrização
15.
Mol Divers ; 25(3): 1889-1904, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33492566

RESUMO

Saikosaponins are major biologically active triterpenoids, usually as glucosides, isolated from Traditional Chinese Medicines (TCM) such as Bupleurum spp., Heteromorpha spp., and Scrophularia scorodonia with their antiviral and immunomodulatory potential. This investigation presents molecular docking, molecular dynamics simulation, and free energy calculation studies of saikosaponins as adjuvant therapy in the treatment for COVID19. Molecular docking studies for 23 saikosaponins on the crystal structures of the extracellular domains of human lnterleukin-6 receptor (IL6), human Janus Kinase-3 (JAK3), and dehydrogenase domain of Cylindrospermum stagnale NADPH-oxidase 5 (NOX5) were performed, and selected protein-ligand complexes were subjected to 100 ns molecular dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Molecular docking and molecular dynamics simulation studies revealed that IL6 in complex with Saikosaponin_U and Saikosaponin_V, JAK3 in complex with Saikosaponin_B4 and Saikosaponin_I, and NOX5 in complex with Saikosaponin_BK1 and Saikosaponin_C have good docking and molecular dynamics profiles. However, the Janus Kinase-3 is the best interacting partner for the saikosaponin compounds. The network pharmacology analysis suggests saikosaponins interact with the proteins CAT Gene CAT (Catalase) and Checkpoint kinase 1 (CHEK1); both of these enzymes play a major role in cell homeostasis and DNA damage during infection, suggesting a possible improvement in immune response toward COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Humanos , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Domínios Proteicos , Saponinas/metabolismo , Saponinas/uso terapêutico
16.
J Biomol Struct Dyn ; 39(13): 4686-4700, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32552462

RESUMO

At present, the world is facing a pandemic named as COVID-19, caused by SARS-CoV-2. Traditional Chinese medicine has recommended the use of liquorice (Glycyrrhiza species) in the treatment of infections caused by SARS-CoV-2. Therefore, the present investigation was carried out to identify the active molecule from the liquorice against different protein targets of COVID-19 using an in-silico approach. The molecular docking simulation study of 20 compounds along with two standard antiviral drugs (Lopinavir and Rivabirin) was carried out with the help of Autodock vina software using two protein targets from COVID-19 i.e. spike glycoprotein (PDB ID: 6VSB) and Non-structural Protein-15 (Nsp15) endoribonuclease (PDB ID: 6W01). From the observed binding energy and the binding interactions, glyasperin A showed high affinity towards Nsp15 endoribonuclease with uridine specificity, while glycyrrhizic acid was found to be best suited for the binding pocket of spike glycoprotein and also prohibited the entry of the virus into the host cell. Further, the dynamic behavior of the best-docked molecules inside the spike glycoprotein and Nsp15 endoribonuclease were explored through all-atoms molecular dynamics (MD) simulation study. Several parameters from the MD simulation have substantiated the stability of protein-ligand stability. The binding free energy of both glyasperin A and glycyrrhizic acid was calculated from the entire MD simulation trajectory through the MM-PBSA approach and found to high binding affinity towards the respective protein receptor cavity. Thus, glyasperin A and glycyrrhizic acid could be considered as the best molecule from liquorice, which could find useful against COVID-19. Communicated by Ramaswamy H. Sarma.


Assuntos
Glycyrrhiza , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , COVID-19 , Glicoproteínas , Glycyrrhiza/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
17.
J Ayurveda Integr Med ; 12(2): 294-301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33342646

RESUMO

BACKGROUND: Ghee is widely considered as the Indian name for clarified butterfat and processing of ghee with therapeutic herbs i.e. ghrita is renowned for augmenting their medicinal properties. Kaamdev ghrita (also known as 'VajikaranaRasayana') is cow ghee based classical Ayurvedic formulation from the aphrodisiac category, which is used to ameliorate and potentiate sexual performance and also in the treatment of sexual dysfunctions, infertility, and premature ejaculation. OBJECTIVE: Present research work deals with the organoleptic, physicochemical, and biological assessment of Kaamdev ghrita for its aphrodisiac activity using in-vivo animal models. MATERIAL AND METHODS: Kaamdev ghrita was prepared using Indian cow's ghee as per standard Ayurvedic classical texts and subjected to organoleptic (color, odor, taste, texture, touch), physicochemical (acid value, peroxide value, iodine value, saponification value, unsaponifiable matter, extractive values, refractive index, and specific gravity) analyses as per the standard pharmacopeial procedures. The aphrodisiac potential of ghrita in rat model was evaluated by monitoring sexual behavioral performance using different parameters (mount frequency and latency, intromission frequency and latency, anogenital grooming and sniffing) at the dose of 150 and 300 mg/kg body weight. RESULTS: The physicochemical evaluation of Kaamdev ghrita showed higher acid value, iodine value, refractive index, and specific gravity whereas the lower saponification and peroxide value than the plain ghee. Kaamdev ghrita revealed the presence of flavonoids, alkaloids, saponins, sterols, terpenoids, coumarins, tannins, and showed remarkable antioxidant activity by in-vitro assays. It augmented the sexual performance in a dose-dependent manner as indicated by significant improvement (P < 0.05) in mount frequency and latency, intromission frequency and latency, anogenital grooming, and sniffing as compared to plain ghee treated control group. The present investigation has corroborated the ethnopharmacological claim of Kaamdevghrita for its aphrodisiac potential. CONCLUSION: Kaamdev ghrita exhibited aphrodisiac activity which may be attributed to the presence of antioxidant herbs present in it. It is the first scientific report on validation of the traditional claim of Kaamdev ghrita for its aphrodisiac potential.

18.
J Biomol Struct Dyn ; 39(9): 3244-3255, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32345124

RESUMO

The Public Health Emergency of International Concern declared the widespread outbreak of SARS-CoV-2 as a global pandemic emergency, which has resulted in 1,773,086 confirmed cases including 111,652 human deaths, as on 13 April 2020, as reported to World Health Organization. As of now, there are no vaccines or antiviral drugs declared to be officially useful against the infection. Saikosaponin is a group of oleanane derivatives reported in Chinese medicinal plants and are described for their anti-viral, anti-tumor, anti-inflammatory, anticonvulsant, antinephritis and hepatoprotective activities. They have also been known to have anti-coronaviral property by interfering the early stage of viral replication including absorption and penetration of the virus. Thus, the present study was undertaken to screen and evaluate the potency of different Saikosaponins against different sets of SARS-CoV-2 binding protein via computational molecular docking simulations. Docking was carried out on a Glide module of Schrodinger Maestro 2018-1 MM Share Version on NSP15 (PDB ID: 6W01) and Prefusion 2019-nCoV spike glycoprotein (PDB ID: 6VSB) from SARS-CoV-2. From the binding energy and interaction studies, the Saikosaponins U and V showed the best affinity towards both the proteins suggesting them to be future research molecule as they mark the desire interaction with NSP15, which is responsible for replication of RNA and also with 2019-nCoV spike glycoprotein which manage the connection with ACE2. [Formula: see text] Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteínas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácido Oleanólico/análogos & derivados , Saponinas , Glicoproteína da Espícula de Coronavírus
19.
RSC Adv ; 11(62): 39362-39375, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492478

RESUMO

Cassia glauca is reported as anti-diabetic medicinal plant and is also used as an ethnomedicine. However, its mode of action as an anti-diabetic agent has not been clearly elucidated. Hence, the present study investigated the probable mechanism of action of C. glauca to manage diabetes mellitus via network pharmacology and molecular docking and simulations studies. The reported bioactives from C. glauca were retrieved from an open-source database, i.e. ChEBI, and their targets were predicted using SwissTargetPrediction. The proteins involved in the pathogenesis of diabetes were identified from the therapeutic target database. The targets involved in diabetes were enriched in STRING, and the pathways involved in diabetes were identified concerning the KEGG. Cytoscape was used to construct the network among bioactives, proteins, and probably regulated pathways, which were analyzed based on edge count. Similarly, molecular docking was performed using the Glide module of the Schrodinger suite against majorly targeted proteins with their respective ligands. Additionally, the drug-likeness score and ADMET profile of the individual bioactives were predicted using MolSoft and admetSAR2.0 respectively. The stability of these complexes were further studied via molecular dynamics simulations and binding energy calculations. Twenty-three bio-actives were retrieved from the ChEBI database in which cassiarin B was predicted to modulate the highest number of proteins involved in diabetes mellitus. Similarly, GO analysis identified the PI3K-Akt signaling pathway to be primarily regulated by modulating the highest number of gene. Likewise, aldose reductase (AKR1B1) was majorly targeted via the bioactives of C. glauca. Similarly, docking study revealed methyl-3,5-di-O-caffeoylquinate (docking score -9.209) to possess the highest binding affinity with AKR1B1. Additionally, drug-likeness prediction identified cassiaoccidentalin B to possess the highest drug-likeness score, i.e. 0.84. The molecular dynamics simulations and the MMGBSA indicate high stability and greater binding energy for the methyl-3,5-di-O-caffeoylquinate (ΔG bind = -40.33 ± 6.69 kcal mol-1) with AKR1B1, thus complementing results from other experiments. The study identified cassiarin B, cassiaoccidentalin B, and cinnamtannin A2 as lead hits for the anti-diabetic activity of C. glauca. Further, the PI3K-Akt and AKR1B1 were traced as majorly modulated pathway and target, respectively.

20.
J Biomol Struct Dyn ; 39(12): 4510-4521, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32568012

RESUMO

COVID-19 has ravaged the world and is the greatest of pandemics in modern human history, in the absence of treatment or vaccine, the mortality and morbidity rates are very high. The present investigation identifies potential leads from the plant Withania somnifera (Indian ginseng), a well-known antiviral, immunomodulatory, anti-inflammatory and a potent antioxidant plant, using molecular docking and dynamics studies. Two different protein targets of SARS-CoV-2 namely NSP15 endoribonuclease and receptor binding domain of prefusion spike protein from SARS-CoV-2 were targeted. Molecular docking studies suggested Withanoside X and Quercetin glucoside from W. somnifera have favorable interactions at the binding site of selected proteins, that is, 6W01 and 6M0J. The top-ranked phytochemicals from docking studies, subjected to 100 ns molecular dynamics (MD) suggested Withanoside X with the highest binding free energy (ΔGbind = -89.42 kcal/mol) as the most promising inhibitor. During MD studies, the molecule optimizes its conformation for better fitting with the receptor active site justifying the high binding affinity. Based on proven therapeutic, that is, immunomodulatory, antioxidant and anti-inflammatory roles and plausible potential against n-CoV-2 proteins, Indian ginseng could be one of the alternatives as an antiviral agent in the treatment of COVID 19. Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Panax , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA