Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Kidney Int ; 105(5): 1058-1076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364990

RESUMO

Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Hipercalciúria/diagnóstico , Hipercalciúria/tratamento farmacológico , Hipercalciúria/genética , Rim/metabolismo , Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo
2.
Paediatr Drugs ; 25(2): 193-202, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36637720

RESUMO

Atypical hemolytic uremic syndrome is a thrombotic microangiopathy characterized by hemolysis, thrombocytopenia, and acute kidney injury, usually caused by alternative complement system overactivation due to pathogenic genetic variants or antibodies to components or regulatory factors in this pathway. Previously, a lack of effective treatment for this condition was associated with mortality, end-stage kidney disease, and the risk of disease recurrence after kidney transplantation. Plasma therapy has been used for atypical hemolytic uremic syndrome treatment with inconsistent results. Complement-blocking treatment changed the outcome and prognosis of patients with atypical hemolytic uremic syndrome. Early administration of eculizumab, a monoclonal C5 antibody, leads to improvements in hematologic, kidney, and systemic manifestations in patients with atypical hemolytic uremic syndrome, even with apparent dialysis dependency. Pre- and post-transplant use of eculizumab is effective in the prevention of atypical hemolytic uremic syndrome recurrence. Evidence on eculizumab use in secondary hemolytic uremic syndrome cases is controversial. Recent data favor the restrictive use of eculizumab in carefully selected atypical hemolytic uremic syndrome cases, but close monitoring for relapse after drug discontinuation is emphasized. Prophylaxis for meningococcal infection is important. The long-acting C5 monoclonal antibody ravulizumab is now approved for atypical hemolytic uremic syndrome treatment, enabling a reduction in the dosing frequency and improving the quality of life in patients with atypical hemolytic uremic syndrome. New strategies for additional and novel complement blockage medications in atypical hemolytic uremic syndrome are under investigation.


Assuntos
Injúria Renal Aguda , Síndrome Hemolítico-Urêmica Atípica , Humanos , Criança , Síndrome Hemolítico-Urêmica Atípica/tratamento farmacológico , Síndrome Hemolítico-Urêmica Atípica/complicações , Qualidade de Vida , Diálise Renal , Resultado do Tratamento
3.
Pediatr Nephrol ; 38(4): 1067-1073, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36156733

RESUMO

BACKGROUND: Idiopathic infantile hypercalcemia (IIH) etiologies include pathogenic variants in CYP24A1, leading to increased 1,25(OH)2 D, hypercalciuria and suppressed parathyroid hormone (PTH), and in SLC34A1 and SLC34A3, leading to the same metabolic profile via increased phosphaturia. IIH has not been previously described in CKD due to kidney hypodysplasia (KHD). METHODS: Retrospective study of children with bilateral KHD and simultaneously tested PTH and 1,25(OH)2D, followed in a tertiary care center between 2015 and 2021. RESULTS: Of 295 screened patients, 139 had KHD, of them 16 (11.5%) had IIH (study group), 26 with normal PTH and any 1,25(OH)2D were controls. There were no differences between groups' gender, obstructive uropathy rate and baseline eGFR. Study patients were younger [median (IQR) age: 5.2 (3.2-11.3) vs. 61 (13.9-158.3) months, p < 0.001], had higher 1,25(OH)2D (259.1 ± 91.7 vs. 156.5 ± 46.4 pmol/l, p < 0.001), total calcium (11.1 ± 0.4 vs. 10.7 ± 0.3 mg/dl, p < 0.001), and lower phosphate standard deviation score (P-SDS) [median (IQR): - 1.4 (- 1.9, - 0.4) vs. - 0.3 (- 0.8, - 0.1), p = 0.03]. During 12 months of follow-up, PTH increased among the study group (8.8 ± 2.8 to 22.7 ± 12.4 pg/ml, p < 0.001), calcium decreased (11 ± 0.5 to 10.3 ± 0.6 mg/dl, p = 0.004), 1,25(OH)2D decreased (259.5 ± 91.7 to 188.2 ± 42.6 pmol/l, p = 0.1), P-SDS increased [median (IQR): - 1.4 (- 1.9, - 0.4) vs. - 0.3 (- 0.9, 0.4), p = 0.04], while eGFR increased. Five of 9 study group patients with available urine calcium had hypercalciuria. Five patients had nephrocalcinosis/lithiasis. Genetic analysis for pathogenic variants in CYP24A1, SLC34A1 and SLC34A3 had not been performed. CONCLUSIONS: Transient IIH was observed in infants with KHD, in association with hypophosphatemia, resembling SLC34A1 and SLC34A3 pathogenic variants' metabolic profile. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Hipercalcemia , Insuficiência Renal Crônica , Lactente , Humanos , Criança , Pré-Escolar , Hipercalcemia/genética , Cálcio/metabolismo , Hipercalciúria/complicações , Hipercalciúria/genética , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Estudos Retrospectivos , Mutação , Hormônio Paratireóideo , Insuficiência Renal Crônica/complicações , Fosfatos , Rim/metabolismo
4.
Front Pediatr ; 9: 752312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858904

RESUMO

Purpose: Hypercalcemia with low parathyroid hormone (PTH) level, hypercalciuria, nephrocalcinosis, or nephrolithiasis, was recently reported as caused by mutations in CYP24A1 and SLC34A genes. These encode for vitamin D-24A-hydroxylase and for the renal phosphate transporters NaPiIIa and NaPiIIc, respectively. We aimed to describe the clinical course of these monogenic disorders in patients with and without found mutations during long-term follow-up. Methods: Ten patients with hypercalcemia, hypercalciuria, elevated 1,25-(OH)2D levels and suppressed PTH were followed in our center during 1998-2019. Relevant laboratory and imaging data and results of genetic evaluation were retrieved from medical files. Results: The median age at presentation was 9.5 months (range 1 month-11 years), six were males, and the median follow-up time was 3.8 (1.1-14) years. Mutations in CYP24A1 and SLC34A3 were identified in three and one patients, respectively. Five patients presented with nephrocalcinosis, three with nephrolithiasis, and two had normal renal ultrasound. High blood calcium and 1,25-(OH)2D levels at presentation decreased during follow-up [11.1 ± 1 vs. 9.9 ± 0.5 mg/dl (p = 0.012), and 307 ± 130 vs. 209 ± 65 pmol/l (p = 0.03), respectively]; this paralleled an increase in suppressed PTH levels (5.8 ± 0.9 vs. 11.8 ± 7.3 pg/ml, p = 0.2). Substantial improvements in hypercalciuria and renal sonography findings were not observed. Two patients had impaired renal function (eGFR 84-88 ml/min/1/73 m2) at the last follow up. Interventions included appropriate diet, citrate supplementation, and thiazides. Conclusion: Despite improvement in hypercalcemia and 1,25-(OH)2D levels, not all the patients showed improvements in hypercalciuria and nephrocalcinosis. Deterioration of renal function was also observed. Long-term follow up and intervention to prevent nephrocalcinosis and nephrolithiasis are recommended in these children.

5.
Pediatr Nephrol ; 31(7): 1085-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26857709

RESUMO

BACKGROUND: Bartter syndrome (BS) may be associated with different degrees of hypercalciuria, but marked parathyroid hormone (PTH) abnormalities have not been described. METHODS: We compared clinical and laboratory data of patients with either ROMK-deficient type II BS (n = 14) or Barttin-deficient type IV BS (n = 20). RESULTS: Only BS-IV patients remained mildly hypokalemic in spite of a higher need for potassium supplementation. Estimated glomerular filtration rate (eGFR) was mildly decreased in only four BS-IV patients. Average PTH values were significantly higher in BS-II (160.6 ± 85.8 vs. 92.5 ± 48 pg/ml in BS-IV, p = 0.006). In both groups, there was a positive correlation between age and log(PTH). Levels of 25(OH) vitamin D were not different. Total serum calcium was lower (within normal limits) and age-related serum phosphate (Pi)-SDS was increased in BS-II (1.19 ± 0.71 vs. 0.01 ± 1.04 in BS-IV, p < 0.001). The GFR threshold for Pi reabsorption was higher in BS-II (5.63 ± 1.25 vs. 4.36 ± 0.98, p = 0.002). Spot urine calcium/creatinine ratio and nephrocalcinosis rate (100 vs. 16 %) were higher in the BS-II group. CONCLUSIONS: PTH, serum Pi levels, and urinary threshold for Pi reabsorption are significantly elevated in type II vs. type IV BS, suggesting a PTH resistance state. This may be a response to more severe long-standing hypercalciuria, leading to a higher rate of nephrocalcinosis in BS-II.


Assuntos
Síndrome de Bartter/complicações , Hiperparatireoidismo/etiologia , Adolescente , Criança , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Hormônio Paratireóideo/sangue , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA