Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 252: 112575, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31953201

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Snakebite is a severe problem in many parts of the world, specifically in tropical and subtropical regions. A range of medicinal plant extracts are administered for treating snake bite. Of the many common plants, extracts of Citrus species have been documented to be used for treating snake bite and have been shown to decrease the snake venom toxicity. AIM: The aim of the current work is to evaluate the utility of citrus peel extracts (Citrus aurantium L. and Citrus reticulate Blanco) in the management of Indian cobra envenomation. MATERIALS AND METHODS: Peels of citrus species were evaluated for their phospholipase A2, protease and haemolytic inhibition properties. The phytochemicals present in the extract were inferred using GC-MS. In-vivo studies, using mice model, were done to confirm the inhibitory effect of the extracts. Molecular docking was used to understand the possible binding modes of selected phytochemicals to snake venom phospholipase. RESULTS: Citrus peel extracts are rich in polyphenols, flavonoids and tannins. The methanolic extract of Citrus aurantium L. and Citrus reticulate Blanco inhibits phospholipase (75%), protease (71%) and hemolysis (80%) activity of the venom. GC-MS analyses indicate the presence of ß-sitosterol, n-hexadecanoic acid, eicosanoic acid, and flavone in both the extracts. In addition, C. reticulate extract contains α-tocopherol and squalene. Molecular docking revealed that α-tocopherol, spiro [androst-5-ene-17,1'-cyclobutan]-2'-one,3-hydroxy-(3ß,17ß)- and ß-sitosterol acetate bind with moderate affinity to the catalytic site of phospholipase A2. CONCLUSION: The present study provides new molecular insight and scientific evidence on the utility of the methanolic extracts of citrus peels to neutralize the venom toxins of Naja naja.


Assuntos
Citrus , Venenos Elapídicos/enzimologia , Naja naja , Inibidores de Fosfolipase A2/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Inibidores de Proteases/farmacologia , Proteínas de Répteis/antagonistas & inibidores , Animais , Hemólise/efeitos dos fármacos , Masculino , Camundongos , Peptídeo Hidrolases/metabolismo , Fosfolipases A2/metabolismo , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Proteínas de Répteis/metabolismo
2.
Pharm Biol ; 54(12): 2814-2821, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27307092

RESUMO

CONTEXT: The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. OBJECTIVE: To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. MATERIALS AND METHODS: Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. RESULTS: The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 µg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). DISCUSSION AND CONCLUSION: The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.


Assuntos
Alho , Ácidos Láuricos/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácido Mirístico/metabolismo , Extratos Vegetais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antituberculosos/isolamento & purificação , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Simulação por Computador , Humanos , Ácidos Láuricos/isolamento & purificação , Ácidos Láuricos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Ácido Mirístico/isolamento & purificação , Ácido Mirístico/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Raízes de Plantas , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA