Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Sci ; 241: 55-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26706058

RESUMO

Specific metabolic network responses to mineral deficiencies are not well-defined. Here, we conducted a detailed broad-scale identification of metabolic responses of tomato leaves and roots to N, P or K deficiency. Tomato plants were grown hydroponically under optimal (5mM N, 0.5mM P, or 5mM K) and deficient (0.5mM N, 0.05mM P, or 0.5mM K) conditions and metabolites were measured by LC-MS and GC-MS. Based on these results, deficiency of any of these three minerals affected energy production and amino acid metabolism. N deficiency generally led to decreased amino acids and organic acids, and increased soluble sugars. P deficiency resulted in increased amino acids and organic acids in roots, and decreased soluble sugars. K deficiency caused accumulation of soluble sugars and amino acids in roots, and decreased organic acids and amino acids in leaves. Notable metabolic pathway alterations included; (1) increased levels of α-ketoglutarate and raffinose family oligosaccharides in N, P or K-deficient tomato roots, and (2) increased putrescine in K-deficient roots. These findings provide new knowledge of metabolic changes in response to mineral deficiencies.


Assuntos
Metaboloma , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Solanum lycopersicum/metabolismo , Hidroponia , Nitrogênio/deficiência , Fósforo/deficiência , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA